Publications by authors named "Yohan Davit"

Stereolithography 3D printing, although an increasingly used fabrication method for microfluidic chips, has the main disadvantage of producing monolithic chips in a single material. We propose to incorporate during printing various objects using a "print-pause-print" strategy. Here, we demonstrate that this novel approach can be used to incorporate glass slides, hydrosoluble films, paper pads, steel balls, elastic or nanoporous membranes and silicon-based microdevices, in order to add microfluidic functionalities as diverse as valves, fluidic diodes, shallow chambers, imaging windows for bacteria tracking, storage of reagents, blue energy harvesting or filters for cell capture and culture.

View Article and Find Full Text PDF

Recent progresses in intravital imaging have enabled highly-resolved measurements of periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are increasingly used as proxies to estimate the local baseline oxygen consumption, which is a hallmark of cell activity. However, the oxygen profile around a given arteriole arises from an interplay between oxygen consumption and delivery, not only by this arteriole but also by distant capillaries.

View Article and Find Full Text PDF

Bacterial biofilms that grow in porous media are critical to ecosystem processes and applications ranging from soil bioremediation to bioreactors for treating wastewater or producing value-added products. However, understanding and engineering the complex phenomena that drive the development of biofilms in such systems remains a challenge. Here we present a novel micromodel technology to explore bacterial biofilm development in porous media flows.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) microfluidic systems have been instrumental in better understanding couplings between physical mechanisms and bacterial biofilm processes, such as hydrodynamic effects. However, precise control of the growth conditions, for example, the initial distribution of cells on the substrate or the boundary conditions in a flow system, has remained challenging. Furthermore, undesired bacterial colonization in crucial parts of the systems, in particular, in mixing zones or tubing, is an important factor that strongly limits the duration of the experiments and, therefore, impedes our ability to study the biophysics of biofilm evolving over long periods of time, as found in the environment, in engineering, or in medicine.

View Article and Find Full Text PDF

The physics of blood flow in small vessel networks is dominated by the interactions between Red Blood Cells (RBCs), plasma and blood vessel walls. The resulting couplings between the microvessel network architecture and the heterogeneous distribution of RBCs at network-scale are still poorly understood. The main goal of this paper is to elucidate how a local effect, such as RBC partitioning at individual bifurcations, interacts with the global structure of the flow field to induce specific preferential locations of RBCs in model microfluidic networks.

View Article and Find Full Text PDF

Tit-for-tat is a familiar principle from animal behavior: individuals respond in kind to being helped or harmed by others. Remarkably some bacteria appear to display tit-for-tat behavior, but how this evolved is not understood. Here we combine evolutionary game theory with agent-based modelling of bacterial tit-for-tat, whereby cells stab rivals with poisoned needles (the type VI secretion system) after being stabbed themselves.

View Article and Find Full Text PDF

Despite the key role of the capillaries in neurovascular function, a thorough characterization of cerebral capillary network properties is currently lacking. Here, we define a range of metrics (geometrical, topological, flow, mass transfer, and robustness) for quantification of structural differences between brain areas, organs, species, or patient populations and, in parallel, digitally generate synthetic networks that replicate the key organizational features of anatomical networks (isotropy, connectedness, space-filling nature, convexity of tissue domains, characteristic size). To reach these objectives, we first construct a database of the defined metrics for healthy capillary networks obtained from imaging of mouse and human brains.

View Article and Find Full Text PDF

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks.

View Article and Find Full Text PDF

Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations.

View Article and Find Full Text PDF

Aging or cerebral diseases may induce architectural modifications in human brain microvascular networks, such as capillary rarefaction. Such modifications limit blood and oxygen supply to the cortex, possibly resulting in energy failure and neuronal death. Modelling is key in understanding how these architectural modifications affect blood flow and mass transfers in such complex networks.

View Article and Find Full Text PDF

The clearest phenotypic characteristic of microbial cells is their shape, but we do not understand how cell shape affects the dense communities, known as biofilms, where many microbes live. Here, we use individual-based modeling to systematically vary cell shape and study its impact in simulated communities. We compete cells with different cell morphologies under a range of conditions and ask how shape affects the patterning and evolutionary fitness of cells within a community.

View Article and Find Full Text PDF

Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries.

View Article and Find Full Text PDF

In a recent paper, Valdès-Parada and Alvarez-Ramirez [Phys. Rev. E 84, 031201 (2011)] used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, D(γ)(*), the goal of which is to describe solute transport in porous media undergoing periodic processes.

View Article and Find Full Text PDF