Publications by authors named "Yoh-ichi Satoh"

A/H1N1 2009 pandemic influenza virus (A/H1N1/pdm09) was first identified as a novel pandemic influenza A virus (IAV) in 2009. Previously, we reported that many viral antigens were detected in type II alveolar epithelial cells (AEC-IIs) within autopsied lung tissue from a patient with A/H1N1/pdm09 pneumonia. It is important to identify the association between the virus and host cells to elucidate the pathogenesis of IAV pneumonia.

View Article and Find Full Text PDF
Article Synopsis
  • Mast cell secretory granules (SGs) contain inflammatory molecules like histamine and are released in response to stimuli, particularly through cross-linking of the IgE receptor.
  • Munc13-4 is essential for the fusion of these SGs with the plasma membrane, but the roles of other Munc13 isoforms, especially Munc13-1, are less understood.
  • Research on RBL-2H3 mast cells revealed that Munc13-1 actually inhibits antigen-induced degranulation, and this effect depends on Munc13-4, suggesting a complex regulatory relationship between these proteins.
View Article and Find Full Text PDF

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. The present study investigated whether stimulation of PACAP receptors (PACAPRs) induces responses in neurons and satellite cells of the superior cervical ganglia (SCG), with special reference to intracellular Ca ([Ca]) changes. The expression of PACAPRs in SCG was detected by reverse transcription-PCR.

View Article and Find Full Text PDF

We have encountered in our anatomical practice the first case and an extremely rare second case in which the ascending, transverse, descending, and sigmoid colons were supplied by the inferior mesenteric artery. The causes of colic artery anomalies are generally explained in conjunction with the development of the superior mesenteric artery, which is intimately related to embryonic elongation and midgut rotation. However, this embryological model was inapplicable to both cases.

View Article and Find Full Text PDF

To understand the current situation of gross anatomy education anatomy classes. Regarding the influence of increased enrollment and to promote sharing of information on its improvement, we capacity in medical schools, many respondents were worried about conducted a questionnaire survey on gross anatomy education the impact on research activities due to the increase in teaching in September 2013. In most medical and dental schools, gross workload without expanding in teaching staff.

View Article and Find Full Text PDF

5-hydroxytriptamine (5-HT: serotonin) is an important transmitter that causes vessel constriction, although few studies have examined the effect of 5-HT on venous smooth muscles. The intracellular Ca(2+) concentration ([Ca(2+)]i) plays an essential role in stimulus-response coupling in numerous tissue/cells including vascular smooth muscle cells. The present study was performed to examine whether differences between arteries and veins in the response to 5-HT can be detected under confocal microscope with respect to [Ca(2+)]i dynamics.

View Article and Find Full Text PDF

Mast cell degranulation is regulated by the small guanosine triphosphatases (GTPases) Rab27a and Rab27b, which have distinct and opposing roles: Rab27b acts as a positive regulator through its effector protein Munc13-4, a non-neuronal isoform of the vesicle-priming Munc13 family of proteins, whereas Rab27a acts as a negative regulator through its effector protein melanophilin, by maintaining integrity of cortical filamentous actin (F-actin), a barrier to degranulation. Here we investigated the role of Rab37, one of the Rab GTPases assumed to be implicated in regulated secretion during mast cell degranulation. Using the RBL-2H3 mast cell line, we detected Rab37 on the secretory granules and found that antigen-induced degranulation was extensively increased by either knockdown of Rab37 or overexpression of a dominant-active Rab37 mutant.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) can act as an extracellular signal that regulates various cellular functions. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in intracellular Ca(2+) ([Ca(2+)]i) and amylase secretion in mouse parotid glands. ATP induced a steep increase in [Ca(2+)]i in acinar cells.

View Article and Find Full Text PDF

Noradrenaline (NA) is a catecholamine with multiple roles including as a hormone and a neurotransmitter. Cellular secretory activities are enhanced by adrenergic stimuli as well as by cholinergic stimuli. The present study aimed to determine which adrenoceptors play a role in controlling intracellular calcium ion ([Ca(2+)]i) level in acinar cells of rat lacrimal glands.

View Article and Find Full Text PDF

Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca(2+) concentration ([Ca(2+)]i) dynamics.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca²⁺](i)) and in the fine structure of acinar cells of rat lacrimal glands.

View Article and Find Full Text PDF

Amyloid beta-protein 1-42 (Abeta42) is believed to play a causative role in the development of Alzheimer disease (AD), although it is a minor part of Abeta. In contrast, Abeta40 is the predominant secreted form of Abeta and recent studies have suggested that Abeta40 has neuroprotective effects and inhibits amyloid deposition. We have reported that angiotensin-converting enzyme (ACE) converts Abeta42 to Abeta40, and its inhibition enhances brain Abeta42 deposition (Zou, K.

View Article and Find Full Text PDF

The regulation of cytosolic Ca(2+) homeostasis is essential for cells, including vascular smooth muscle cells. Arterial tone, which underlies the maintenance of peripheral resistance in the circulation, is a major contributor to the control of blood pressure. Diuretics may regulate intracellular Ca(2+) concentration ([Ca(2+)](i)) and have an effect on vascular tone.

View Article and Find Full Text PDF

5-hydroxytriptamine (5-HT) is an important transmitter for vessel constriction. The present study was performed to clarify the effect of 5-HT on smooth muscles in large- and small-sized cerebral and testicular arterioles by confocal microscopy, with special reference to intracellular Ca2+ concentration ([Ca2+]i) dynamics. In cerebral vessels, 5-HT induced a [Ca2+]i increase and the contraction of smooth muscle cells in large- and midsized arterioles (external diameters>50 microm) but not in small-sized arterioles.

View Article and Find Full Text PDF

Ca(2+) signaling controls a wide range of cellular functions such as division, fertilization, apoptosis and necrosis. Specifically, calcium signaling is thought to play a crucial role in driving cells through the different stages of the cell-division cycle. In most cells, however, this fact is far from being established.

View Article and Find Full Text PDF

Background: How neurons and neuronal circuits transform sensory input into behavior is not well understood. Because of its well-described, simple nervous system, Caenorhabditis elegans is an ideal model organism to study this issue. Transformation of sensory signals into neural activity is a crucial first step in the sensory-motor transformation pathway in an animal's nervous system.

View Article and Find Full Text PDF

Regulation of the intracellular calcium ion concentration ([Ca(2+)](i)) is critical, because calcium signaling controls diverse and vital cellular processes such as secretion, proliferation, division, gene transcription, and apoptosis. Store-operated calcium entry (SOCE) is the main mechanism through which non-excitable cells replenish and thus maintain this delicate balance. There is limited evidence which indicates that SOCE may be inhibited during mitosis, and the mechanisms leading to the presumed inhibition has not been elucidated.

View Article and Find Full Text PDF

Dipyridamole, an inhibitor of adenosine uptake as well as a cGMP phosphodiesterase inhibitor, is commonly used in prophylactic therapy for patients with angina pectoris. However, the effects of dipyridamole on systemic blood vessels, especially on the peripheral vascular system, are not well understood. Therefore, the effect of dipyridamole on ATP-induced arteriole contraction was examined with special reference to intracellular Ca(2+) concentration ([Ca(2+)](i)) using real-time confocal microscopy.

View Article and Find Full Text PDF

Protease-activated receptors (PARs) expressed in the endothelia and smooth muscles of vessels may play important roles in blood vessel function. Using intracellular calcium ion concentration ([Ca2+]i) imaging, we recently observed that small - but not large - arterioles of the brain responded to proteases, while testicular arterioles showed no response. The purpose of the present study was to examine the heterogeneity of the localization of PARs in arterioles using immunohistochemistry.

View Article and Find Full Text PDF

Pulmonary surfactant is synthesized and secreted by pulmonary alveolar type II epithelial cells (type II cells). It passes through the alveolar lining fluid and adsorbs to the air-liquid interface. The process from secretion to adsorption is not yet entirely understood.

View Article and Find Full Text PDF

The current immunohistochemical study used the antibody against neuropeptide Y (NPY) to observe the morphology of the autonomic ganglia in the mouse pancreas. The results indicated that intrapancreatic ganglion cells stained positively for NPY. Two types of ganglia were observed and they included the endocrine-contact ganglia that made contact with the endocrine pancreas and the interstitial ganglia, which were located in the interstitial space.

View Article and Find Full Text PDF

Histamine is inactivated by the histamine-metabolizing enzyme histamine N-methyltransferase (HNMT) in bronchus, kidney, and the central nervous system. HNMT seems to be localized in the cytoplasm, but histamine is unable to easily enter the intracellular space. Therefore, two hypotheses can be elicited: one is the plasma membrane hypothesis that HNMT can be translocated to the plasma membrane and function at the cell surface under growth factor stimulation and the other is the transporter hypothesis that organic cation transporter (OCT)-2 and -3 can function as a histamine transporter as well.

View Article and Find Full Text PDF

Protease-activated receptors (PARs) mediate cellular responses to various proteases in numerous cell types, including smooth muscles and the endothelium of blood vessels. To clarify whether the stimulation of PARs induces responses in smooth muscle cells of cerebral arterioles, intracellular Ca2+([Ca2+]i) dynamics and nitric oxide (NO) production during PARs stimulation were investigated in the rat cerebral arterioles by real-time confocal microscopy, since [Ca2+]i and NO are both key factors in the maintenance of strain in blood vessels. Testicular arterioles were also investigated for comparison.

View Article and Find Full Text PDF

In the vascular wall, adenosine-5'-triphosphate (ATP) released along with noradrenaline from sympathetic nerve terminals is considered to play an important role in controlling intracellular calcium ion ([Ca2+]i) levels in arteries. The present study examined how vascular smooth muscle cells in coronary arterioles respond to ATP in relation to [Ca2+]i dynamics. For this purpose, the dynamics of [Ca2+]i in the coronary arterioles of golden hamsters was examined by real-time laser scanning confocal microscopy.

View Article and Find Full Text PDF

Fluorescence microscopy imaging has developed into an important tool for the study of cell structure and function in cell biology. This non-invasive technique permits the characterization, localization and qualitative quantification of free ions, messengers, pH, voltage and other molecules in living cells. The regulation of cytosolic Ca2+ homeostasis is essential for cells.

View Article and Find Full Text PDF