Retinitis pigmentosa (RP) is caused by many different mutations that promote the degeneration of rod photoreceptors and have no direct effect on cones. After the majority of rods have died cone photoreceptors begin to slowly degenerate. Oxidative damage contributes to cone cell death and it has been hypothesized that tissue hyperoxia due to reduced oxygen consumption from the loss of rods is what initiates oxidative stress.
View Article and Find Full Text PDFRetinitis pigmentosa occurs due to mutations that cause rod photoreceptor degeneration. Once most rods are lost, gradual degeneration of cone photoreceptors occurs. Oxidative damage and abnormal glucose metabolism have been implicated as contributors to cone photoreceptor death.
View Article and Find Full Text PDFNeovascular age-related macular degeneration and diabetic retinopathy are prevalent causes of vision loss requiring frequent intravitreous injections of VEGF-neutralizing proteins, and under-treatment is common and problematic. Here we report incorporation of sunitinib, a tyrosine kinase inhibitor that blocks VEGF receptors, into a non-inflammatory biodegradable polymer to generate sunitinib microparticles specially formulated to self-aggregate into a depot. A single intravitreous injection of sunitinib microparticles potently suppresses choroidal neovascularization in mice for six months and in another model, blocks VEGF-induced leukostasis and retinal nonperfusion, which are associated with diabetic retinopathy progression.
View Article and Find Full Text PDFWet age-related macular degeneration (AMD) and diabetic retinopathy are the leading causes of blindness through increased angiogenesis. Although VEGF-neutralizing proteins provide benefit, inconsistent responses indicate a need for new therapies. We previously identified the Fibulin-7 C-terminal fragment (Fbln7-C) as an angiogenesis inhibitor in vitro.
View Article and Find Full Text PDFMetipranolol is a β-adrenergic receptor antagonist that is given orally for the treatment of hypertension and also applied topically to the cornea for treating glaucoma. It also inhibits nitrosative stress which has previously been shown to be the cause of cone photoreceptor death in retinitis pigmentosa. In this study, we tested the hypothesis that metipranolol protects photoreceptor structure and function in the mouse model rd10.
View Article and Find Full Text PDFIntraocular injections of VEGF-neutralizing proteins provide tremendous benefits in patients with choroidal neovascularization (NV) due to age-related macular degeneration (AMD), but during treatment some patients develop retinal atrophy. Suggesting that VEGF is a survival factor for retinal neurons, a clinical trial group attributed retinal atrophy to VEGF suppression and cautioned against frequent anti-VEGF injections. This recommendation may contribute to poor outcomes in clinical practice from insufficient treatment.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF)-neutralizing proteins provide benefit in several retinal and choroidal vascular diseases, but some patients still experience suboptimal outcomes, and the need for frequent intraocular injections is a barrier to good outcomes. A mimetic peptide derived from collagen IV, AXT107, suppressed subretinal neovascularization (NV) in two mouse models predictive of effects in neovascular age-related macular degeneration (NVAMD) and inhibited retinal NV in a model predictive of effects in ischemic retinopathies. A combination of AXT107 and the current treatment aflibercept suppressed subretinal NV better than either agent alone.
View Article and Find Full Text PDFAdv Exp Med Biol
April 2016
Lack of tyrosine O Sulfation compromises both rod and cone electroretinographic responses emphasizing the importance of this post-translational modification for vision. To identify tyrosine sulfated proteins in retina, cow retinal lysates were subjected to immunoaffinity purification using an anti-sulfotyrosine antibody. The tyrosine sulfated proteins were eluted from the column using a sulfotyrosine pentapeptide and identified using mass spectrometry.
View Article and Find Full Text PDFSerine/threonine kinase Akt is a downstream effector of insulin receptor/PI3K pathway that is involved in many processes, including providing neuroprotection to stressed rod photoreceptor cells. Akt signaling is known to be regulated by the serine/threonine phosphatases, PHLPP (PH domain and leucine rich repeat protein phosphatase) and PHLPPL (PH domain and leucine rich repeat protein phosphatase-like). We previously reported that both phosphatases are expressed in the retina, as well as in photoreceptor cells.
View Article and Find Full Text PDFTyrosine sulfation is a post-translational modification (PTM) where a sulfate group is added to a tyrosine moiety. This PTM is responsible for strengthening interaction between proteins. One of the drawbacks of studying this PTM is the lack of an antibody that can detect all tyrosine-sulfated proteins.
View Article and Find Full Text PDFLack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation.
View Article and Find Full Text PDFRetinal detachment is the physical separation of the retina from the retinal pigment epithelium. It occurs during aging, trauma, or during a variety of retinal disorders such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, or as a complication following cataract surgery. This report investigates the role of fibulin 2, an extracellular component, in retinal detachment.
View Article and Find Full Text PDFTo investigate the role(s) of protein-tyrosine sulfation in the retina and to determine the differential role(s) of tyrosylprotein sulfotransferases (TPST) 1 and 2 in vision, retinal function and structure were examined in mice lacking TPST-1 or TPST-2. Despite the normal histologic retinal appearance in both Tpst1(-/-) and Tpst2(-/-) mice, retinal function was compromised during early development. However, Tpst1(-/-) retinas became electrophysiologically normal by postnatal day 90 while Tpst2(-/-) mice did not functionally normalize with age.
View Article and Find Full Text PDFTo investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space.
View Article and Find Full Text PDFAn estimated 100,000 people in the US alone have retinitis pigmentosa. This disease, caused by the loss of rods and cones, results in blindness. With the intention of identifying common cell death pathways that result in RP, the pattern of global gene expression in three different mouse models of retinal degeneration was analyzed using DNA arrays.
View Article and Find Full Text PDFIn our previous studies, we have shown that insulin receptor (IR) activation leads to the activation of phosphoinositide 3-kinase (PI3K) and Akt activation in rod photoreceptors. This pathway is functionally important for photoreceptor survival as deletion of IR and one of the isoforms of Akt (Akt2) resulted in stress-induced photoreceptor degeneration. However, the molecular mechanism of this degeneration is not known.
View Article and Find Full Text PDFTyrosine-O-sulfation, a post-translational modification, is catalyzed by two independent tyrosylprotein sulfotransferases (TPSTs). As an initial step towards understanding the role of TPSTs in retinal function, this study was undertaken to determine the extent to which tyrosine-O-sulfation of proteins is utilized in the retina. A previously characterized anti-sulfotyrosine antibody was used to determine the presence and localization of tyrosine-O-sulfated proteins (TOSPs) in the retina.
View Article and Find Full Text PDFPurpose: RDH11 and RDH12 are closely related retinol dehydrogenases expressed in the retina. RDH12 has been linked to the early-onset retinal dystrophy Leber congenital amaurosis, whereas RDH11 has not been associated with human disease. To understand their physiological roles, the authors investigated their expression during development and their regulation by light-induced oxidative stress in mouse retina.
View Article and Find Full Text PDFTo determine whether cones and Müller cells in the rod dominated retina cooperate to regenerate the 11-cis retinal chromophore via the retinoid cycle, two cell lines from the rod dominated retinas of Murine were used for this study: 661W, a mouse cell line derived from cones, and rMC-1, a rat Müller cell line. Retinoid cycle enzymes were analyzed by RT-PCR, and their catalytic activity was detected by incubation with retinoids and analyzed by HPLC. We found that 661W cells are capable of reducing all-trans retinal to all-trans retinol due to the presence of multiple dehydrogenases and to generate minor amounts of retinyl-ester.
View Article and Find Full Text PDFPurpose: Although the apoptotic death of photoreceptor cells in retinal degenerative disorders is well documented, the molecular mechanism is not understood. The objective of this study was to determine the molecular events leading to the death of photoreceptor cells.
Methods: An assay was developed wherein 661W cells, a cone photoreceptor cell line, were stressed with light and percentage of surviving cells was determined.
Kaposi sarcoma-associated herpesvirus (KSHV) is a human lymphotropic herpesvirus. It is implicated in B cell neoplasias such as primary effusion lymphoma and multicentric Castleman disease in AIDS patients. The KSHV latency-associated nuclear antigen (LANA) is consistently expressed in all KSHV-associated tumor cells and was shown to bind the tumor suppressor proteins p53 and pRb.
View Article and Find Full Text PDF