Publications by authors named "Yogeshwar Sharma"

Article Synopsis
  • Diabetes is a widespread chronic condition, and the article reviews recent advancements in non-invasive blood glucose monitoring, focusing specifically on microwave glucose sensors.
  • Microwave sensors stand out due to their quick response times, low user intervention, and potential for continuous monitoring, making them particularly useful for everyday use.
  • The article evaluates the effectiveness of these sensors in terms of accuracy and user comfort, while also discussing the challenges they face and potential future developments, especially in wearable technology.
View Article and Find Full Text PDF

Inadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid.

View Article and Find Full Text PDF

Aims: Exposures to toxic metals, including arsenic (As), pose health risks but joint effects of physiologically needed metals, e.g., copper (Cu), are ill-defined for regulated metal-dependent cell proliferation (or metalloplasia).

View Article and Find Full Text PDF

Preterm infants are at greater risk for adverse drug effects due to hepatic immaturity. Multiple interventions during intensive care increases potential for drug interactions. In this setting, high-dose caffeine used for apnea in premature infants may increase acetaminophen toxicity by inhibiting ataxia telangiectasia mutated (ATM) gene activity during DNA damage response.

View Article and Find Full Text PDF

Acute liver failure constitutes a devastating condition that needs novel cell and molecular therapies. To elicit synergisms in cell types of therapeutic interest, we studied hepatocytes and liver sinusoidal endothelial in mice with acetaminophen-induced acute liver failure. The context of regenerative signals was examined by transplants in peritoneal cavity because it possesses considerable capacity and allows soluble signals to enter the systemic circulation.

View Article and Find Full Text PDF

The innate immune system plays a critical role in allograft rejection. Alloresponses involve numerous cytokines, chemokines, and receptors that cause tissue injury during rejection. To dissect these inflammatory mechanisms, we developed cell transplantation models in dipeptidylpeptidase-deficient F344 rats using mycophenolate mofetil and tacrolimus for partial lymphocyte-directed immunosuppression.

View Article and Find Full Text PDF

To overcome the rising burdens of nonalcoholic fatty liver disease, mechanistic linkages in mitochondrial dysfunction, inflammation and hepatic injury are critical. As ataxia telangiectasia mutated (ATM) gene oversees DNA integrity and mitochondrial homeostasis, we analyzed mRNAs and total proteins or phosphoproteins related to ATM gene by arrays in subjects with healthy liver, fatty liver or nonalcoholic steatohepatitis. Functional genomics approaches were used to query DNA damage or cell growth events.

View Article and Find Full Text PDF

Pathways involving ataxia telangiectasia mutated (ATM) gene and its downstream partners and effectors are critical for the DNA damage response. Cell survival, proliferation and tissue homeostasis are dependent upon preservation of DNA integrity but additional intracellular mechanisms contribute in these processes. As receptor-mediated signaling with beneficial intersections in ATM pathways could have therapeutic significance, we interrogated such intersections with assays using HuH-7 cells (hepatocytes).

View Article and Find Full Text PDF

Scaffolds from healthy placentae offer advantages for tissue engineering with undamaged matrix, associated cytoprotective molecules, and embedded vessels for revascularization. As size disparities in human placenta and small recipients hamper preclinical studies, we studied alternative of bovine placentomes in smaller size ranges. Multiple cow placentomes were decellularized and anatomical integrity was analyzed.

View Article and Find Full Text PDF

Hepatocyte transplantation is an attractive alternative to liver transplantation. Thus far, however, extensive liver repopulation by adult hepatocytes has required ongoing genetic, physical, or chemical injury to host liver. We hypothesized that providing a regulated proliferative and/or survival advantage to transplanted hepatocytes should enable repopulation in a normal liver microenvironment.

View Article and Find Full Text PDF

Reconstitution of healthy endothelial cells in vascular beds offers opportunities for mechanisms in tissue homeostasis, organ regeneration, and correction of deficient functions. Liver sinusoidal endothelial cells express unique functions, and their transplantation is relevant for disease models and for cell therapy. As molecular targets for improving transplanted cell engraftment and proliferation will be highly significant, this study determined whether ET receptor antagonism by the drug bosentan could overcome cell losses due to cell transplantation-induced cytotoxicity.

View Article and Find Full Text PDF

In Wilson's disease, mutations impair copper excretion with liver or brain damage. Healthy transplanted hepatocytes repopulate the liver, excrete copper, and reverse hepatic damage in animal models of Wilson's disease. In mice with tyrosinemia and α-1 antitrypsin mutant mice, liver disease is resolved by expansions of healthy hepatocytes derived from transplanted healthy bone marrow stem cells.

View Article and Find Full Text PDF

Objectives: Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration.

View Article and Find Full Text PDF

Unlabelled: Tissue engineering with scaffolds to form transplantable organs is of wide interest. Decellularized tissues have been tested for this purpose, although supplies of healthy donor tissues, vascular recellularization for perfusion, and tissue homeostasis in engineered organs pose challenges. We hypothesized that decellularized human placenta will be suitable for tissue engineering.

View Article and Find Full Text PDF

Wilson's disease (WD) is characterized by the inability to excrete copper (Cu) from the body with progressive tissue injury, especially in liver and brain. The molecular defect in WD concerns mutations in ATP7B gene leading to loss of Cu transport from the hepatocyte to the bile canaliculus. While drugs, e.

View Article and Find Full Text PDF

Defective copper excretion from hepatocytes in Wilson's disease causes accumulation of copper ions with increased generation of reactive oxygen species via the Fenton-type reaction. Here we developed a nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry coupled with the isotope-dilution method for the simultaneous quantification of oxidatively induced DNA modifications. This method enabled measurement, in microgram quantities of DNA, of four oxidative stress-induced lesions, including direct ROS-induced purine cyclonucleosides (cPus) and two exocyclic adducts induced by byproducts of lipid peroxidation, i.

View Article and Find Full Text PDF

Superior cell culture models for hepatitis B virus (HBV) will help advance insights into host-virus interactions. To identify mechanisms regulating HBV replication, this study used cultured human HepG2 cells and adult or fetal hepatocytes transduced with adenoviral vector to express HBV upstream of green fluorescent protein. The vector efficiently transduced all cell types.

View Article and Find Full Text PDF

We genetically characterized the extent of variation in HIV-1 LTR sequences from 11 mother-to-child transmission (MTCT) pairs from HIV-1-infected individuals from North India. Nine pairs were found to be infected with subtype C virus whereas two pairs were infected with subtype B virus. They harbored the characteristic three and two NF-κB sites, respectively.

View Article and Find Full Text PDF

HIV-1 Rev protein regulates the expression of HIV-1 transcripts by binding to a highly structured stem loop structure called the Rev Responsive Element (RRE) present in the genomic and partially spliced RNAs. Genetic variation in this structure is likely to affect binding of Rev protein and ultimately overall gene expression and replication. We characterized RRE sequences from 13 HIV-1 infected individuals from North India which also included two mother-child pairs following vertical transmission.

View Article and Find Full Text PDF

HIV-1 displays extensive genetic diversity globally which poses challenge in designing a suitable antigen/immunogen to provoke desired protective immune response in host. HIV-1 mediated pathogenesis is complex and involves host genes, virus genes and other factors. A number of genetic subtypes have been identified based on sequence variations, largely in envelope region.

View Article and Find Full Text PDF

A multitarget approach is needed for effective gene silencing that combines more than one antiviral strategy. With this in mind, we designed a wild-type (wt) and selectively disabled chimeric mutant (mt) constructs that consisted of small hairpin siRNA joined by a short intracellular cleavable linker to a known hammerhead ribozyme, both targeted against the full-length X RNA of hepatitis B. These chimeric RNAs possessed the ability to cleave the target RNA under in vitro conditions and were efficiently processed at the cleavable site.

View Article and Find Full Text PDF

Accessory Vpr protein of HIV-1 is known to influence several key cellular functions that also impacts on the HIV-1 replication cycle. Besides other activities, it alone causes cell cycle arrest at the G2 phase and thus potentially contribute to the overall pathology. We designed several 10-23 catalytic motifs containing DNAzymes (Dzs) against the full-length Vpr gene from subtype B and checked its activity against VprC gene from one of the Indian HIV-1 isolates.

View Article and Find Full Text PDF