Publications by authors named "Yogeshwar D More"

On-demand uranium extraction from seawater (UES) can mitigate growing sustainable energy needs, while high salinity and low concentration hinder its recovery. A novel anionic metal-organic framework (iMOF-1A) is demonstrated adorned with rare Lewis basic pyrazinic sites as uranyl-specific nanotrap serving as robust ion exchange material for selective uranium extraction, rendering its intrinsic ionic characteristics to minimize leaching. Ionic adsorbents sequestrate 99.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications.

View Article and Find Full Text PDF

In recent years, detoxification of contaminated water by different types of materials has received a great deal of attention. However, lack of methodical in-depth understanding of the role of various physical properties of such materials toward improved sorption performance limits their applicable efficiencies. In perspective, decontamination of oxoanion-polluted water by porous materials with different morphologies are unexplored due to a shortfall of proper synthetic strategies.

View Article and Find Full Text PDF

The potential emergence of fluorescence-based techniques has propelled research towards developing probes that can sense trace metal ions specifically. Although luminescent metal-organic frameworks (MOFs) are well suited for this application, the role of building blocks towards detection is not fully understood. In this work, a systematic screening by varying number of Lewis basic (pyridyl-N atoms) sites is carried out in a series of isostructural, robust UiO-67 MOFs, and targeting a model metal ion-Fe .

View Article and Find Full Text PDF

Thanks to a bottom-up design of metals and organic ligands, the library of metal-organic frameworks (MOFs) has seen a conspicuous growth. Post-synthetically modified MOFs comprise a relatively smaller subset of this library. Whereas the approach of post-synthetic modification was seminally introduced for MOFs in the early 1990s, the earliest examples of post-synthetically modified MOFs are only congruous with adsorption and catalysis.

View Article and Find Full Text PDF

Water pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.

View Article and Find Full Text PDF

Metal-organic polyhedra (MOP) are a promising class of crystalline porous materials with multifarious potential applications. Although MOPs and metal-organic frameworks (MOFs) have similar potential in terms of their intrinsic porosities and physicochemical properties, the exploitation of carboxylate MOPs is still rudimentary because of the lack of systematic development addressing their chemical stability. Herein we describe the fabrication of chemically robust carboxylate MOPs via outer-surface functionalization as an a priori methodology, to stabilize those MOPs system where metal-ligand bond is not so strong.

View Article and Find Full Text PDF

A phenanthroline-functionalized Cd aminoterephthalate [Cd(NH -bdc)(phen)] (NH -bdc=2-aminobenzenedicarboxylic acid, phen=1,10-phenanthroline) metal-organic framework (MOF) displays CO -selective adsorption properties and photoluminescence induced by phenolic guests. The inherently guest-free, rigid amine-rich framework exhibits substantial CO -selective adsorption at ambient temperatures (both at 273 and 298 K) over other flue gases like N , CH , O , Ar and H , with a high isosteric heat of adsorption at zero coverage (ΔH ≈34 KJmol ). Moreover, the fluorescent phenanthroline guest introduced to the MOF results in an excellent photoluminescence signature, which can serve as a marker for tuning phenolic-guest-induced luminescence.

View Article and Find Full Text PDF