Fat/water separation methods such as fluctuating equilibrium magnetic resonance and linear combination steady-state free precession have not yet been successfully implemented at 3.0 T due to extreme limitations on the time available for spatial encoding with the increase in magnetic field strength. We present a method to utilize a three-dimensional radial sequence combined with linear combination steady-state free precession at 3.
View Article and Find Full Text PDFThe consistency of off-axis MRI with non-Cartesian sequences across a large number of scanners is highly variable. Improper timing alignment of the gradient fields, data acquisition system, and real-time frequency demodulation reference signal, which are necessary for off-axis imaging, is an important source of this variability. In addition, eddy currents and anisotropic gradient delays cause deviations in k-space trajectories that in turn make the demodulation reference signals inaccurate.
View Article and Find Full Text PDF