Publications by authors named "Yogesh Dhungana"

Background And Aims: Hexokinases (HKs), a group of enzymes catalyzing the first step of glycolysis, have been shown to play important roles in liver metabolism and tumorigenesis. Our recent studies identified hexokinase domain containing 1 (HKDC1) as a top candidate associated with liver cancer metastasis. We aimed to compare its cell-type specificity with other HKs upregulated in liver cancer and investigate the molecular mechanisms underlying its involvement in liver cancer metastasis.

View Article and Find Full Text PDF

Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes.

View Article and Find Full Text PDF

Cancer cells evade T cell-mediated killing through tumour-immune interactions whose mechanisms are not well understood. Dendritic cells (DCs), especially type-1 conventional DCs (cDC1s), mediate T cell priming and therapeutic efficacy against tumours. DC functions are orchestrated by pattern recognition receptors, although other signals involved remain incompletely defined.

View Article and Find Full Text PDF

Many signaling and other genes known as "hidden" drivers may not be genetically or epigenetically altered or differentially expressed at the mRNA or protein levels, but, rather, drive a phenotype such as tumorigenesis via post-translational modification or other mechanisms. However, conventional approaches based on genomics or differential expression are limited in exposing such hidden drivers. Here, we present a comprehensive algorithm and toolkit NetBID2 (data-driven network-based Bayesian inference of drivers, version 2), which reverse-engineers context-specific interactomes and integrates network activity inferred from large-scale multi-omics data, empowering the identification of hidden drivers that could not be detected by traditional analyses.

View Article and Find Full Text PDF

The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as "hidden drivers", are difficult to identify via conventional expression analysis due to low expression and inconsistency between RNA and protein activity caused by post-translational and other modifications. To address this issue, we developed scMINER, a mutual information (MI)-based computational framework for unsupervised clustering analysis and cell-type specific inference of intracellular networks, hidden drivers and network rewiring from single-cell RNA-seq data.

View Article and Find Full Text PDF

The sparse nature of single-cell omics data makes it challenging to dissect the wiring and rewiring of the transcriptional and signaling drivers that regulate cellular states. Many of the drivers, referred to as "hidden drivers", are difficult to identify via conventional expression analysis due to low expression and inconsistency between RNA and protein activity caused by post-translational and other modifications. To address this issue, we developed scMINER, a mutual information (MI)-based computational framework for unsupervised clustering analysis and cell-type specific inference of intracellular networks, hidden drivers and network rewiring from single-cell RNA-seq data.

View Article and Find Full Text PDF

Phosphatase and tensin homologue (PTEN) is frequently mutated in human cancer, but its roles in lymphopoiesis and tissue homeostasis remain poorly defined. Here we show that PTEN orchestrates a two-step developmental process linking antigen receptor and IL-23-Stat3 signalling to type-17 innate-like T cell generation. Loss of PTEN leads to pronounced accumulation of mature IL-17-producing innate-like T cells in the thymus.

View Article and Find Full Text PDF

The identification of mechanisms to promote memory T (T) cells has important implications for vaccination and anti-cancer immunotherapy. Using a CRISPR-based screen for negative regulators of T cell generation in vivo, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF). Several components of the cBAF complex are essential for the differentiation of activated CD8 T cells into T effector (T) cells, and their loss promotes T cell formation in vivo.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells.

View Article and Find Full Text PDF
Article Synopsis
  • Nutrients play a significant role in regulating adaptive immunity by activating mTORC1, a critical factor for cell metabolism, but the integration of these signals is not fully understood.
  • Researchers used CRISPR screening and protein interaction networks to uncover how immune signals and nutrients affect mTORC1 in mouse regulatory T cells, identifying SEC31A as a key player in promoting mTORC1 activation.
  • The study found that mechanisms like the SWI/SNF complex and the SAGA complex regulate mTORC1 activity, influencing T cell priming, inflammation, and antitumor immunity.
View Article and Find Full Text PDF
Article Synopsis
  • T follicular helper (T) cells play an essential role in supporting B cell function and the immune response, with transcription factors like BCL6 driving their development.
  • This study uncovers the importance of the CDP-ethanolamine pathway and specific enzymes (ETNK1, PCYT2, SELENOI) for promoting T cell differentiation by regulating the expression of the CXCR5 protein, critical for T cell response.
  • The research shows that lipid metabolism, particularly through the synthesis of phosphatidylethanolamine (PE), is vital in maintaining CXCR5's presence on T cells and ensuring effective humoral immunity, indicating a link between metabolic processes and immune cell signaling.
View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T-cell therapeutic efficacy is associated with long-term T-cell persistence and acquisition of memory. Memory-subset formation requires T-cell factor 1 (TCF-1), a master transcription factor for which few regulators have been identified. Here, we demonstrate using an immune-competent mouse model of B-cell acute lymphoblastic leukemia (ALL; B-ALL) that Regnase-1 deficiency promotes TCF-1 expression to enhance CAR-T-cell expansion and memory-like cell formation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how metabolic factors influence the development and responses of effector T cells (Teff) and memory T cells (Tm) through a systematic analysis using CRISPR screening, focusing on negative regulators.
  • - Researchers found that certain amino acid transporters, Slc7a1 and Slc38a2, reduce T cell differentiation by affecting mTORC1 signaling and that different T cell types exhibit diverse metabolic characteristics.
  • - The investigation also revealed that the availability of GDP-fucose and its impact on Notch signaling is crucial for T cell fate, revealing the importance of nutrient uptake and signaling in shaping T cell responses.
View Article and Find Full Text PDF

Regulatory T cells (T cells) are essential for immune tolerance, but also drive immunosuppression in the tumour microenvironment. Therapeutic targeting of T cells in cancer will therefore require the identification of context-specific mechanisms that affect their function. Here we show that inhibiting lipid synthesis and metabolic signalling that are dependent on sterol-regulatory-element-binding proteins (SREBPs) in T cells unleashes effective antitumour immune responses without autoimmune toxicity.

View Article and Find Full Text PDF

Effector regulatory T (eT) cells are essential for immune tolerance and depend upon T cell receptor (TCR) signals for generation. The immunometabolic signaling mechanisms that promote the differentiation and maintenance of eT cells remain unclear. Here, we show that isoprenoid-dependent posttranslational lipid modifications dictate eT cell accumulation and function by intersecting with TCR-induced intracellular signaling.

View Article and Find Full Text PDF

Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells acquire effector functions during development by mechanisms that remain poorly understood. Here, we show that the Hippo kinases Mst1 and Mst2 act as molecular rheostats for the terminal maturation and effector differentiation programs of iNKT cells. Loss of Mst1 alone or together with Mst2 impedes iNKT cell development, associated with defective IL-15-dependent cell survival.

View Article and Find Full Text PDF

Regulatory T cell (T) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of T accumulation and functional activation. Myc activity is enriched in T generated during neonatal life and responding to inflammation.

View Article and Find Full Text PDF

Adoptive cell therapy represents a new paradigm in cancer immunotherapy, but it can be limited by the poor persistence and function of transferred T cells. Here we use an in vivo pooled CRISPR-Cas9 mutagenesis screening approach to demonstrate that, by targeting REGNASE-1, CD8 T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumours. REGNASE-1-deficient CD8 T cells show markedly improved therapeutic efficacy against mouse models of melanoma and leukaemia.

View Article and Find Full Text PDF

Thymocyte egress is a critical determinant of T cell homeostasis and adaptive immunity. Despite the roles of G protein-coupled receptors in thymocyte emigration, the downstream signaling mechanism remains poorly defined. Here, we report the discrete roles for the two branches of mevalonate metabolism-fueled protein prenylation pathway in thymocyte egress and immune homeostasis.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a pivotal role in priming adaptive immunity. However, the involvement of DCs in controlling excessive and deleterious T cell responses remains poorly defined. Moreover, the metabolic dependence and regulation of DC function are unclear.

View Article and Find Full Text PDF

A defining feature of adaptive immunity is the development of long-lived memory T cells to curtail infection. Recent studies have identified a unique stem-like T-cell subset amongst exhausted CD8-positive T cells in chronic infection, but it remains unclear whether CD4-positive T-cell subsets with similar features exist in chronic inflammatory conditions. Amongst helper T cells, T17 cells have prominent roles in autoimmunity and tissue inflammation and are characterized by inherent plasticity, although how such plasticity is regulated is poorly understood.

View Article and Find Full Text PDF

Interleukin-2 (IL-2) and downstream transcription factor STAT5 are important for maintaining regulatory T (Treg) cell homeostasis and function. Treg cells can respond to low IL-2 levels, but the mechanisms of STAT5 activation during partial IL-2 deficiency remain uncertain. We identified the serine-threonine kinase Mst1 as a signal-dependent amplifier of IL-2-STAT5 activity in Treg cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how extrinsic factors and intrinsic signal strength affect thymocyte (T cell precursor) development, focusing on the role of mTORC1 in this process.
  • It reveals that mTORC1 interacts with metabolic programs to influence the development of two major T cell lineages, αβ and γδ T cells, by controlling metabolic processes like glycolysis and oxidative phosphorylation.
  • The research identifies mTORC1’s role in regulating reactive oxygen species as a crucial factor in determining the developmental fate of thymocytes, linking T cell receptor and NOTCH signals to metabolic activity.
View Article and Find Full Text PDF