The aim of this study was to identify candidate resistance genes for late leaf spot (LLS) and rust diseases in peanut ( L.). We used a double-digest restriction-site associated DNA sequencing (ddRAD-Seq) technique based on next-generation sequencing (NGS) for genotyping analysis across the recombinant inbred lines (RILs) derived from a cross between a susceptible line, TAG 24, and a resistant line, GPBD 4.
View Article and Find Full Text PDFA high performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised to separate with precision, accuracy and high reproducibility soluble sugars including oligosaccharides present in pulse meal samples. The optimised method within 20min separated myo-inositol, galactinol, glucose, fructose, sucrose, raffinose, stachyose and verbascose in chickpea seed meal extracts. Gradient method of eluting solvent (sodium hydroxide) resulted in higher sensitivity and rapid detection compared to similar analytical methods.
View Article and Find Full Text PDFTo develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in chickpea ( Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in the greenhouse (Saskatoon, Canada).
View Article and Find Full Text PDF