Publications by authors named "Yogatheesan Varatharajah"

Epilepsy is a prevalent and serious neurological condition which impacts millions of people worldwide. Stereoelectroencephalography (sEEG) is used in cases of drug resistant epilepsy to aid in surgical resection planning due to its high spatial resolution and ability to visualize seizure onset zones. For accurate localization of the seizure focus, sEEG studies combine pre-implantation magnetic resonance imaging, post-implant computed tomography to visualize electrodes, and temporally recorded sEEG electrophysiological data.

View Article and Find Full Text PDF

Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer's disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness.

View Article and Find Full Text PDF

Low frequency brain rhythms facilitate communication across large spatial regions in the brain and high frequency rhythms are thought to signify local processing among nearby assemblies. A heavily investigated mode by which these low frequency and high frequency phenomenon interact is phase-amplitude coupling (PAC). This phenomenon has recently shown promise as a novel electrophysiologic biomarker, in a number of neurologic diseases including human epilepsy.

View Article and Find Full Text PDF

Clinical trials are conducted to evaluate the efficacy of new treatments. Clinical trials involving multiple treatments utilize the randomization of treatment assignments to enable the evaluation of treatment efficacies in an unbiased manner. Such evaluation is performed in post hoc studies that usually use supervised-learning methods that rely on large amounts of data collected in a randomized fashion.

View Article and Find Full Text PDF
Article Synopsis
  • Anterior temporal lobectomy (ATL) is a surgery for people with severe epilepsy that doesn’t respond to medicine, but some patients still have seizures afterward.
  • Researchers wanted to find out if using machine learning to analyze "normal" EEG readings (brain waves) could help predict if patients would be free of seizures after surgery.
  • They studied EEG data from 64 patients and found that certain brain wave patterns could accurately predict who would have seizures after surgery, especially in a specific frequency range.
View Article and Find Full Text PDF

Specific brain structures (gray matter regions and white matter tracts) play a dominant role in determining cognitive decline and explain the heterogeneity in cognitive aging. Identification of these structures is crucial for screening of older adults at risk of cognitive decline. Using deep learning models augmented with a model-interpretation technique on data from 1432 Mayo Clinic Study of Aging participants, we identified a subset of brain structures that were most predictive of individualized cognitive trajectories and indicative of cognitively resilient vs.

View Article and Find Full Text PDF

Objective: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery.

View Article and Find Full Text PDF

Routine scalp EEG is essential in the clinical diagnosis and management of epilepsy. However, a normal scalp EEG (based on expert visual review) recorded from a patient with epilepsy can cause delays in diagnosis and clinical care delivery. Here, we investigated whether normal EEGs might contain subtle electrophysiological clues of epilepsy.

View Article and Find Full Text PDF

The absence of epileptiform activity in a scalp electroencephalogram (EEG) recorded from a potential epilepsy patient can cause delays in clinical care delivery. Here we present a machine-learning-based approach to find evidence for epilepsy in scalp EEGs that do not contain any epileptiform activity, according to expert visual review (i.e.

View Article and Find Full Text PDF

Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures.

View Article and Find Full Text PDF

Objective: This paper introduces a fully automated, subject-specific deep-learning convolutional neural network (CNN) system for forecasting seizures using ambulatory intracranial EEG (iEEG). The system was tested on a hand-held device (Mayo Epilepsy Assist Device) in a pseudo-prospective mode using iEEG from four canines with naturally occurring epilepsy.

Approach: The system was trained and tested on 75 seizures collected over 1608 d utilizing a genetic algorithm to optimize forecasting hyper-parameters (prediction horizon (PH), median filter window length, and probability threshold) for each subject-specific seizure forecasting model.

View Article and Find Full Text PDF

In the Alzheimer's disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical management. Our goal was to develop generalizable multivariate models that integrate high-dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 3 years. Our main findings were i) we were able to build generalizable models with clinically relevant accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting progression; iii) our methodology allowed us to discover that expression of CR1 (complement receptor 1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive value.

View Article and Find Full Text PDF

Objective: To test the utility of a novel semi-automated method for detecting, validating, and quantifying high-frequency oscillations (HFOs): ripples (80-200 Hz) and fast ripples (200-600 Hz) in intra-operative electrocorticography (ECoG) recordings.

Methods: Sixteen adult patients with temporal lobe epilepsy (TLE) had intra-operative ECoG recordings at the time of resection. The computer-annotated ECoG recordings were visually inspected and false positive detections were removed.

View Article and Find Full Text PDF

Objective: An ability to map seizure-generating brain tissue, i.e. the seizure onset zone (SOZ), without recording actual seizures could reduce the duration of invasive EEG monitoring for patients with drug-resistant epilepsy.

View Article and Find Full Text PDF

The ability to predict seizures may enable patients with epilepsy to better manage their medications and activities, potentially reducing side effects and improving quality of life. Forecasting epileptic seizures remains a challenging problem, but machine learning methods using intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-based pipeline was developed to process iEEG recordings and generate seizure warnings.

View Article and Find Full Text PDF