Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is a murine model for multiple sclerosis. This model is characterized by chronic and progressive demyelination, leading to impairment of motor function and paralysis. While the outcomes of the disease, including impaired motor function and immunological changes, are well-characterized, little is known about the impact of EAE on the electrophysiology of the motor and sensory systems.
View Article and Find Full Text PDFTuft dendrites of layer 5 pyramidal neurons form a separate biophysical and processing compartment. Presently, little is known about plasticity mechanisms in this isolated compartment. Here, we describe a novel form of plasticity in which unpaired low-frequency (0.
View Article and Find Full Text PDFAsc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo.
View Article and Find Full Text PDFSynaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function.
View Article and Find Full Text PDFThe synaptic vesicle cycle encompasses the pre-synaptic events that drive neurotransmission. Influx of calcium leads to the fusion of synaptic vesicles with the plasma membrane and the release of neurotransmitter, closely followed by endocytosis. Vacated release sites are repopulated with vesicles which are then primed for release.
View Article and Find Full Text PDF