Publications by authors named "Yoav Adam"

Unlabelled: Perineal urethrostomy in cats is indicated for urethral pathologies located distal to the bulbourethral glands. The description of the bulbourethral glands as the cranial landmark when performing a PU is based on the increased urethral diameter at this location, rather than on an anatomical limitation. This suggests that urethral pathologies cranial to the bulbourethral glands could potentially be treated with PU.

View Article and Find Full Text PDF

Astrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K is voltage dependent, but astrocyte membrane potential (V) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function.

View Article and Find Full Text PDF

Photoactivated genetically encoded voltage indicators (GEVIs) have the potential to enable optically sectioned voltage imaging at the intersection of a photoactivation beam and an imaging beam. We developed a pooled high-throughput screen to identify archaerhodopsin mutants with enhanced photoactivation. After screening ~10 cells, we identified a novel GEVI, NovArch, whose one-photon near-infrared fluorescence is reversibly enhanced by weak one-photon blue or two-photon near-infrared excitation.

View Article and Find Full Text PDF

The ability to probe the membrane potential of multiple genetically defined neurons simultaneously would have a profound impact on neuroscience research. Genetically encoded voltage indicators are a promising tool for this purpose, and recent developments have achieved a high signal-to-noise ratio in vivo with 1-photon fluorescence imaging. However, these recordings exhibit several sources of noise and signal extraction remains a challenge.

View Article and Find Full Text PDF

Technology for simultaneous control and readout of the membrane potential of multiple neurons in behaving animals at high spatio-temporal resolution will have a high impact on neuroscience research. Significant progress in the development of Genetically Encoded Voltage Indicators (GEVIs) now enables to optically record subthreshold and spiking activity from ensembles of cells in behaving animals. In some cases, the GEVIs were also combined with optogenetic actuators to enable 'all-optical' control and readout of membrane potential at cellular resolution.

View Article and Find Full Text PDF

A technology that simultaneously records membrane potential from multiple neurons in behaving animals will have a transformative effect on neuroscience research. Genetically encoded voltage indicators are a promising tool for these purposes; however, these have so far been limited to single-cell recordings with a marginal signal-to-noise ratio in vivo. Here we developed improved near-infrared voltage indicators, high-speed microscopes and targeted gene expression schemes that enabled simultaneous in vivo recordings of supra- and subthreshold voltage dynamics in multiple neurons in the hippocampus of behaving mice.

View Article and Find Full Text PDF

Optical tools for simultaneous perturbation and measurement of neural activity open the possibility of mapping neural function over wide areas of brain tissue. However, spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize optical crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhodopsin reported to-date with a nuclear-localized red-shifted Ca indicator, H2B-jRGECO1a.

View Article and Find Full Text PDF

Optical assays of synaptic strength could facilitate studies of neuronal transmission and its dysregulation in disease. Here we introduce a genetic toolbox for all-optical interrogation of synaptic electrophysiology (synOptopatch) via mutually exclusive expression of a channelrhodopsin actuator and an archaerhodopsin-derived voltage indicator. Optically induced activity in the channelrhodopsin-expressing neurons generated excitatory and inhibitory postsynaptic potentials that we optically resolved in reporter-expressing neurons.

View Article and Find Full Text PDF

Unlabelled: Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus.

View Article and Find Full Text PDF

Photons are a fascinating reagent, flowing and reacting quite differently compared to more massive and less ephemeral particles of matter. The optogenetic palette comprises an ever growing set of light-responsive proteins, which open the possibility of using light to perturb and to measure biological processes with great precision in space and time. Yet there are limits on what light can achieve.

View Article and Find Full Text PDF

Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli.

View Article and Find Full Text PDF

The adult mammalian brain is continuously supplied with adult-born neurons in the olfactory bulb (OB) and hippocampus, where they are thought to be important for circuit coding and plasticity. However, direct evidence for the actual involvement of these neurons in neural processing is still lacking. We recorded the spiking activity of adult-born periglomerular neurons in the mouse OB in vivo using two-photon-targeted patch recordings.

View Article and Find Full Text PDF

The mammalian olfactory bulb (OB) contains a rich and highly heterogeneous network of local interneurons (INs). These INs undergo continuous turnover in the adult OB in a process known as "adult neurogenesis." Although the overall magnitude of adult neurogenesis has been estimated, the detailed dynamics of the different subpopulations remains largely unknown.

View Article and Find Full Text PDF

The rodent olfactory bulb (OB) is becoming a model system for studying how neuronal circuits develop and maintain. The OB has typical components of a sensory circuit such as ordered sensory inputs, diverse populations of interneurons, substantial neuromodulatory innervation, and projection neurons that transfer information to higher brain centers. Additionally, the OB is unique because its sensory afferents and a subset of its interneurons are continuously replaced throughout adulthood.

View Article and Find Full Text PDF

The vesicular monoamine transporters (VMATs) are essential proteins, involved in the storage of monoamines in the central nervous system and in endocrine cells, in a process that involves exchange of 2H(+) with one substrate molecule. The VMATs interact with various native substrates and clinically relevant drugs and display the pharmacological profile of multidrug transporters. Vesicular transporters suffer from a lack of biochemical and structural data due to the difficulties in their expression.

View Article and Find Full Text PDF

EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers.

View Article and Find Full Text PDF

EmrE is an Escherichia coli H(+)-coupled multidrug transporter that provides a unique experimental paradigm because of its small size and stability, and because its activity can be studied in detergent solution. In this work, we report a study of the transient kinetics of substrate binding and substrate-induced proton release in EmrE. For this purpose, we measured transient changes in the tryptophan fluorescence upon substrate binding and the rates of substrate-induced proton release.

View Article and Find Full Text PDF

A novel approach to study coupling of substrate and ion fluxes is presented. EmrE is an H(+)-coupled multidrug transporter from Escherichia coli. Detergent-solubilized EmrE binds substrate with high affinity in a pH-dependent mode.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnk2k4ds16q3287ifje3ul9upfl7mjum0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once