Publications by authors named "Yoanne M Clovis"

Long-range enhancer interactions critically regulate gene expression, yet little is known about how their coordinated activities contribute to CNS development or how this may, in turn, relate to disease states. By examining the regulation of the transcription factor NFIA in the developing spinal cord, we identified long-range enhancers that recapitulate NFIA expression across glial and neuronal lineages in vivo. Complementary genetic studies found that Sox9-Brn2 and Isl1-Lhx3 regulate enhancer activity and NFIA expression in glial and neuronal populations.

View Article and Find Full Text PDF

During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated the fate specification of spinal V2a interneurons, which share important developmental genes with motor neurons (MNs).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are 20-25 nucleotide long, noncoding, and single-strand RNAs that have been found in almost all organisms and shown to exert essential roles by regulating the stability and translation of target mRNAs. In mammals most miRNAs show tissue specific and developmentally regulated expression. Approximately 70 % of all miRNAs are expressed in the brain and a growing number of studies have shown that miRNAs can modulate both brain development function and dysfunction.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are rapidly emerging as a new layer of regulation of mammalian brain development. However, most of the miRNA target genes remain unidentified. Here, we explore gene expression profiling upon miRNA depletion and in vivo target validation as a strategy to identify novel miRNA targets in embryonic mouse neocortex.

View Article and Find Full Text PDF