Publications by authors named "Yoan Brissonnet"

is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently KDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D--nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of KDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence.

View Article and Find Full Text PDF

Determination of glycosidase hydrolysis kinetics for a monovalent sugar substrate is relatively straightforward and classically achieved by monitoring the fluorescence signal released from the sugar-conjugated probe after enzymatic hydrolysis. Naturally occuring sugar epitopes are, however, often clustered on biopolymers or at biological surfaces, and previous reports have shown that glycosidase hydrolytic rates can differ greatly with multivalent presentation of the sugar epitopes. New probes are needed to make it easier to interpret the importance of substrate clustering towards a specific enzyme activity.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the leading causes of death worldwide. Long duration of TB therapy, results in the persistence and development of drug resistant strains of causative organism Mycobacterium tuberculosis (Mtb). Novel drug targets against persistent Mtb is an immediate need for overcoming this global menace.

View Article and Find Full Text PDF

In the field of nicotinic acetylcholine receptors (nAChRs), recognized as important therapeutic targets, much effort has been dedicated to the development of nicotinic analogues to agonize or antagonize distinct homo- and heteropentamers nAChR subtypes, selectively. In this work we developed di- and heptavalent nicotinic derivatives based on ethylene glycol (EG) and cyclodextrin cores, respectively. The compounds showed a concentration dependent inhibition of acetylcholine-induced currents on α7 nAChR expressed by Xenopus oocytes.

View Article and Find Full Text PDF

Sialidases (SAs) hydrolyze sialyl residues from glycoconjugates of the eukaryotic cell surface and are virulence factors expressed by pathogenic bacteria, viruses, and parasites. The catalytic domains of SAs are often flanked with carbohydrate-binding module(s) previously shown to bind sialosides and to enhance enzymatic catalytic efficiency. Herein, non-hydrolyzable multivalent thiosialosides were designed as probes and inhibitors of V.

View Article and Find Full Text PDF

FleA (or AFL), a fucose lectin, was recently identified in the opportunistic mold Aspergillus fumigatus, which causes fatal lung infections in immunocompromised patients. We designed di-, hexa- and octavalent fucosides with various spacer arm lengths to block the hexameric FleA through chelation. Microcalorimetry measurements showed that the ethylene glycol (EG) spacer arm length has a strong influence on the binding affinity of the divalent fucosides.

View Article and Find Full Text PDF

β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host.

View Article and Find Full Text PDF

Multivalent iminosugars have recently emerged as powerful tools to inhibit the activities of specific glycosidases. In this work, biocompatible dextrans were coated with iminosugars to form linear and ramified polymers with unprecedently high valencies (from 20 to 900) to probe the evolution of the multivalent inhibition as a function of ligand valency. This study led to the discovery that polyvalent iminosugars can also significantly enhance, not only inhibit, the enzymatic activity of specific glycoside-hydrolase, as observed on two galactosidases, a fucosidase, and a bacterial mannoside phosphorylase for which an impressive 70-fold activation was even reached.

View Article and Find Full Text PDF

Multivalent iminosugars have been recently explored for glycosidase inhibition. Affinity enhancements due to multivalency have been reported for specific targets, which are particularly appealing when a gain in enzyme selectivity is achieved but raise the question of the binding mode operating with this new class of inhibitors. Here we describe the development of a set of tetra- and octavalent iminosugar probes with specific topologies and an assessment of their binding affinities toward a panel of glycosidases including the Jack Bean α-mannosidase (JBαMan) and the biologically relevant class II α-mannosidases from Drosophila melanogaster belonging to glycohydrolase family 38, namely Golgi α-mannosidase ManIIb (GM) and lysosomal α-mannosidase LManII (LM).

View Article and Find Full Text PDF

Ionic liquids (ILs) can be partially substituted by glycerol or glycerol carbonate as cheap, safe, and renewably sourced co-solvents in the acid-catalyzed dehydration of fructose and inulin to 5-hydroxymethylfurfural (HMF). In the particular case of glycerol, we found that HMF can be conveniently extracted from the IL/glycerol (65:35) mixture with methylisobutylketone, limiting the reactivity of glycerol with HMF and allowing the recovery of HMF with a high purity (95 %). Influences of the fructose content, temperature, and the nature of the ionic liquid are also discussed.

View Article and Find Full Text PDF