Publications by authors named "Yli-Urpo A"

The aim of this study was to investigate in vitro bioactivity of different thermoplastic biodegradable barrier membranes. Three experimental GBR membranes were fabricated using Poly(epsilon-caprolactone-co-D: ,L-lactide) P(CL/DL-LA) and particulate bioactive glass S53P4 (BAG; granule size 90-315 microm): (A) composite membrane with 60-wt.% of BAG, (B) membrane coated with BAG; and (C) copolymer membrane without BAG.

View Article and Find Full Text PDF

Background: Synthetic, osteoconductive, and antimicrobial bioactive glass (BAG) has been used in many surgical applications.

Methods: BAG was used as obliteration material in a series of osteoplastic frontal sinus operations on 42 patients suffering from chronic frontal sinusitis, which could not be cured with other means of treatment.

Results: Accurate obliteration of sinuses was achieved in 39 patients.

View Article and Find Full Text PDF

Regenerated cellulose sponges were coated biomimetically with hydroxyapatite to increase their osteogenic properties. Induction of apatite precipitation was carried out with bioactive glass in simulated body fluid (SBF) for 24 h and the final coating was carried out in 1.5 x concentrated SBF for 14 days.

View Article and Find Full Text PDF

The aim of this study was to investigate the biomimetic mineralization on the surface of a glass fiber reinforced composite with partially resorbable biopolymer matrix. The E-glass fibers were preimpregnated with a novel biopolymer of poly(hydroxyproline) amide, and further impregnated in the monomer system of bis-phenyl glycidyl dimethacrylate (Bis-GMA)--triethylene glycol dimethacrylate (TEGDMA), which formed interpenetrating polymer networks (IPN) with the preimpregnation polymer. After light-initiated polymerization of the monomer system, the rhombic test specimens (n = 6) were immersed in the simulated body fluid (SBF) with the bioactive glass for 24 h, and then the apatite nuclei were allowed to grow for 1, 3, 5 and 7 days in the SBF.

View Article and Find Full Text PDF

The aim of this study is to determine the peak temperature of polymerization, the setting time and the release of residual monomers of a modified acrylic bone cement. Palacos R, a commercial bone cement, is used as the main component. The cement is modified by adding short glass fibers and resorbable oligomer fillers, and an additional cross-linking monomer.

View Article and Find Full Text PDF

The aim of this study was to synthesize on a larger scale, an experimental polyamide based on an amino acid of trans-4-hydroxy-L-proline. The polyamide of trans-4-hydroxy-L-proline has been used as porogen filler (i.e.

View Article and Find Full Text PDF

Objectives: The study compared the bond strengths of three resins, Bis-GMA and two novel experimental methacrylated polyester dendrimer resins to grit-blasted titanium substrate with three silanes.

Methods: Two commercial dental silanes (ESPE Sil and Monobond-S) and an experimental 0.5 vol% 3-methacryloxypropyltrimethoxysilane were applied to grit-blasted Ti substrates.

View Article and Find Full Text PDF

Injectable composites (Glepron) of particulate bioactive glass S53P4 (BAG) and Poly(epsilon-caprolactone-co-D,L-lactide) as thermoplastic carrier matrix were investigated as bone fillers in cancellous and cartilagineous subchondral bone defects in rabbits. Composites were injected as viscous liquid or mouldable paste. The glass granules of the composites resulted in good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone.

View Article and Find Full Text PDF

The flexural properties of oligomer-modified bone cement with various quantities of crosslinking monomer with or without glass fibre reinforcement were studied. The flexural strength and modulus of acrylic bone cement-based test specimens (N=6), including crosslinked and oligomer-modified structures with or without glass fibres, were measured in dry conditions and after immersion in simulated body fluid (SBF) for seven days (analysis with ANOVA). One test specimen from the acrylic bone cement group containing 30 wt % crosslinking monomer of its total monomer content was examined with scanning electron microscope (SEM) to evaluate signs of the semi-interpenetrating polymer network (semi-IPN).

View Article and Find Full Text PDF

Titanium and its alloys are widely used in load-bearing bioinert implants. Bioactive glasses (BAGs) form a chemical bond with bone, but they are not suitable for load-bearing applications. Creating a BAG coating on a titanium implant could combine the best properties of both materials.

View Article and Find Full Text PDF

An experimental animal model was used to investigate the effect of bioactive glass (BG) granules and nonresorbable polytetrafluoroethylene (PTFE) membrane on the repair of cortical bone defects adjacent to titanium and BG implants. Thirty-two Astra(R) (diameter 3.5 mm) dental implants were inserted bicortically and 42 conical BG implants (diameter 2.

View Article and Find Full Text PDF

The aim of this study was to investigate cytotoxicity of composition of E-glass fibers and novel biopolymer of poly(hydroxyproline). Growth and proliferation of the human gingival fibroblast cells on the surface of the materials was evaluated. The number of cells grown and proliferated on cell culture plastic was used as a control.

View Article and Find Full Text PDF

The aim of this study was to evaluate flexural properties of glass fiber-reinforced composites with a multiphase biopolymer matrix. Continuous unidirectional E-glass fibers were preimpregnated with a novel biopolymer of poly(hydroxyproline) amide and ester. The preimpregnated fibers were then further impregnated in a co-monomer system of Bis-GMA-TEGDMA, which formed semi-interpenetrating polymer networks (semi-IPN) with the preimpregnated polymer.

View Article and Find Full Text PDF

Delamination or fracture of composite veneers can occur as a result of improper design of the fiber-reinforced composite (FRC) framework. This in vitro study tested the repair bond strength of restorative composite to aged FRC. The substrate was multiphase polymer matrix FRC (everStick) aged by boiling for 8 h and storing at 37 degrees C in water for 6 weeks.

View Article and Find Full Text PDF

Purpose: This overview presents a description of organofunctional trialkoxysilane coupling agents (silanes), their chemistry, properties, use, and some of the main clinical experiences in dentistry.

Materials And Methods: The main emphasis was on major dental journals that have been reviewed from 1958 up to the latest research news from 2002. A MEDLINE search with the key words "dental silanes" was used.

View Article and Find Full Text PDF

Objectives: Bilateral sinus floor augmentation procedure was performed in 17 patients to study the effect of bioactive glass (BG) granules mixed with autologous bone (AB) chips on bone regeneration. The posterior part of 17 maxillary sinus was augmented with a 1:1 mixture of BG granules (phi 800-1000 microm) and AB chips harvested from the iliac crest (BG-AB group). The anterior parts of the same sinus and the contralateral sinus, serving as a control (AB group), were filled with AB chips alone.

View Article and Find Full Text PDF

Bioactive properties of composites containing poly(epsilon-caprolactone-co-DL-lactide) with molar ratio 96/4 and bioactive glass (BAG), S53P4, were tested in vitro. The glass content in the tested materials was 40, 60 or 70 wt%, and two granule size ranges (<45 and 90-315 microm) were used. The composites were analysed for their apatite-forming ability.

View Article and Find Full Text PDF

Sol-gel derived silicas are potential biomaterials both for tissue regeneration and drug delivery applications. In this study, both SiO(2) and calcium and phosphate-containing SiO(2) (CaPSiO(2)) are combined with poly-(DL-lactide) to form a composite. The main properties studied are the ion release rates of biologically important ions (soluble SiO(2) and Ca(2+)) and the formation of bone mineral-like calcium phosphate (CaP) on the composite surface.

View Article and Find Full Text PDF

Three synthetic bioactive materials were studied in an experimental model to compare their usability in a frontal sinus and a skull bone defect obliteration. Bioactive glass number 9 (BAG(1)), bioactive glass number 13 (BAG(2)), and hydroxyapatite (HA) granules were investigated. BAG(1) and HA granules have been previously tested clinically.

View Article and Find Full Text PDF

Sol-gel-derived TiO(2) coatings are known to promote bonelike hydroxyapatite formation on their surfaces in vitro and in vivo. Hydroxyapatite integrates into bone tissue. In some clinical applications, the surface of an implant is simultaneously interfaced with soft and hard tissues, so it should match the properties of both.

View Article and Find Full Text PDF

The aim of this study was to evaluate biologic behavior of a composite of bioactive glass (BAG) (S53P4) and copolymer of poly(epsilon-caprolactone-co-DL-lactide) in experimental bone defects in rabbits. Twenty New Zealand white rabbits were used for the study. Bone defects (4 x 6mm) were prepared in the medial surfaces of the femoral condyles and the tibia.

View Article and Find Full Text PDF

The objective of this study was to evaluate the possibilities to control the release rate of dexmedetomidine (DMED) from different spray-dried silica gel microparticle formulations. Microparticles were prepared by spray drying a silica sol polymer solution containing the drug. Drug release was investigated both in vitro and in vivo.

View Article and Find Full Text PDF

In vitro bioactivity of composites of poly(epsilon-caprolactone-co-DL-lactide) P(CL/DL-LA) containing different amounts (40, 60 and 70 wt%) of bioactive glass, S53P4, was evaluated. Two ranges of granule size of bioactive glass (< 45 microm and 90-315 microm) were blended with P(CL/DL-LA) copolymer in a batch mixer. The composites were characterised by dynamic mechanical thermal analysis.

View Article and Find Full Text PDF