Publications by authors named "Ylenia Miele"

The identification of the degradation products in objects of cultural significance, including musical instruments (e.g., a piano), is a key issue for the preservation and valorisation processes of cultural heritage.

View Article and Find Full Text PDF

The understanding of the shape-change dynamics leading to the budding and division of artificial cells has gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems and minimal models of biological self-reproduction. In this respect, membranes and their composition play a fundamental role in many aspects related to the stability of the vesicles: permeability, elasticity, rigidity, tunability and response to external changes. In this review, we summarise recent experimental and theoretical work dealing with shape deformation and division of (giant) vesicles made of phospholipids and/or fatty acids membranes.

View Article and Find Full Text PDF

The transmission of chemical signals via an extracellular solution plays a vital role in collective behavior in cellular biological systems and may be exploited in applications of lipid vesicles such as drug delivery. Here, we investigated chemical communication in synthetic micro- and nanovesicles containing urease in a solution of urea and acid. We combined experiments with simulations to demonstrate that the fast transport of ammonia to the external solution governs the pH-time profile and synchronizes the timing of the pH clock reaction in a heterogeneous population of vesicles.

View Article and Find Full Text PDF
Article Synopsis
  • There has been an increase in studies about microplastics (MPs) due to rising concerns about their health risks.
  • MPs can enter the human body mainly through inhalation and ingestion, with less risk from skin contact, and are found in various foods beyond just seafood and drinking water.
  • Initial toxicological studies show that high concentrations of MPs can have harmful effects on human cells, but more research is needed to understand the long-term implications of lower concentrations of exposure.
View Article and Find Full Text PDF

The budding and division of artificial cells engineered from vesicles and droplets have gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems. Proper control of the division process is one of the main challenges in the field of synthetic biology and, especially in the context of the origin of life studies, it would be helpful to look for the simplest chemical and physical processes likely at play in prebiotic conditions. Here we show that pH-sensitive giant unilamellar vesicles composed of mixed phospholipid/fatty acid membranes undergo a budding process, internally fuelled by the urea-urease enzymatic reaction, only for a given range of the membrane composition.

View Article and Find Full Text PDF

Shape transformation and budding of phospholipid/fatty acid giant hybrid vesicles can be induced by an internal chemical stimulus (pH change) when coupled with an osmotic shock. In particular, an autocatalytic enzymatic reaction set (urea-urease system), confined in the lumen of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/oleic acid (HOA) vesicles, can force the budding of the hosting vesicle, when properly fed by a trans-membrane substrate infusion. Herein, we elucidate the budding mechanism by simulating the shape changes of a vesicle during the enzymatic reaction.

View Article and Find Full Text PDF

The study of the cell membrane is an ambitious and arduous objective since its physical state is regulated by a series of processes that guarantee its regular functionality. Among the different methods of analysis, fluorescence spectroscopy is a technique of election, non-invasive, and easy to use. Besides, molecular dynamics analysis (MD) on model membranes provides useful information on the possibility of using a new probe, following its positioning in the membrane, and evaluating the possible perturbation of the double layer.

View Article and Find Full Text PDF

Background: In recent years, there has been a growing interest in the formation of copolymer-lipid hybrid self-assemblies, which allow combining and improving the main features of pure lipid-based and copolymer-based systems known for their potential applications in the biomedical field. As the most common method used to obtain giant vesicles is electroformation, most systems so far used low T polymers for their flexibility at room temperature.

Methods: Copolymers used in the hybrid vesicles have been synthesized by a modified version of the ATRP, namely the Activators ReGenerated by Electron Transfer ATRP and characterized by NMR and DSC.

View Article and Find Full Text PDF

Self-division is one of the most common phenomena in living systems and one of the most important properties of life driven by internal mechanisms of cells. Design and engineering of synthetic cells from abiotic components can recreate a life-like function thus contributing to the understanding of the origin of life. Existing methods to induce the self-division of vesicles require external and non-autonomous triggers (temperature change and the addition of membrane precursors).

View Article and Find Full Text PDF

In this paper we show that the active interplay of nonlinear kinetics and transport phenomena in a chemical oscillator can be exploited to induce and control chaos. To this aim we use as a model system the ferroin-catalysed Belousov-Zhabotinsky (BZ) oscillating reaction, which is known to evolve to characteristic chaotic transient dynamics when carried out under batch and unstirred conditions. In particular, chemical chaos was found to appear and disappear by following a Ruelle-Takens-Newhouse (RTN) scenario.

View Article and Find Full Text PDF