Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Conventional catheter- or probe-based in vivo biomedical sensing is uncomfortable, inconvenient, and sometimes infeasible for long-term monitoring. Existing implantable sensors often require an invasive procedure for sensor placement. Untethered soft robots with the capability to deliver the sensor to the desired monitoring point hold great promise for minimally invasive biomedical sensing.
View Article and Find Full Text PDFSilent speech interfaces have been pursued to restore spoken communication for individuals with voice disorders and to facilitate intuitive communications when acoustic-based speech communication is unreliable, inappropriate, or undesired. However, the current methodology for silent speech faces several challenges, including bulkiness, obtrusiveness, low accuracy, limited portability, and susceptibility to interferences. In this work, we present a wireless, unobtrusive, and robust silent speech interface for tracking and decoding speech-relevant movements of the temporomandibular joint.
View Article and Find Full Text PDF