The extent and efficacy of DNA end resection at DNA double-strand breaks (DSB) determine the repair pathway choice. Here we describe how the 53BP1-associated protein DYNLL1 works in tandem with the Shieldin complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1, where it limits end resection by binding and disrupting the MRE11 dimer.
View Article and Find Full Text PDFExtent and efficacy of DNA end resection at DNA double strand break (DSB)s determines the choice of repair pathway. Here we describe how the 53BP1 associated protein DYNLL1 works in tandem with Shieldin and the CST complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1 where it limits end resection by binding and disrupting the MRE11 dimer.
View Article and Find Full Text PDFThe 53BP1-RIF1 pathway restricts the resection of DNA double-strand breaks (DSBs) and promotes blunt end-ligation by non-homologous end joining (NHEJ) repair. The Shieldin complex is a downstream effector of the 53BP1-RIF1 pathway. Here, we identify a component of this pathway, CCAR2/DBC1, which is also required for restriction of DNA end-resection.
View Article and Find Full Text PDFThis study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates.
View Article and Find Full Text PDFLimited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase.
View Article and Find Full Text PDFHigh-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents (i.e., platinum and poly(ADP-ribose) polymerase inhibitors [PARPis]) due to an underlying defect in homologous recombination (HR).
View Article and Find Full Text PDFAurora-A is a conserved kinase implicated in mitotic regulation and carcinogenesis. Aurora-A was previously implicated in mitotic entry and spindle assembly, although contradictory results prevented a clear understanding of the roles of Aurora-A in mammals. We developed a conditional null mutation in the mouse Aurora-A gene to investigate Aurora-A functions in primary cells ex vivo and in vivo.
View Article and Find Full Text PDFDamaged DNA binding protein 1, DDB1, bridges an estimated 90 or more WD40 repeats (DDB1-binding WD40, or DWD proteins) to the CUL4-ROC1 catalytic core to constitute a potentially large number of E3 ligase complexes. Among these DWD proteins is the human immunodeficiency virus type 1 (HIV-1) Vpr-binding protein VprBP, whose cellular function has yet to be characterized but has recently been found to mediate Vpr-induced G(2) cell cycle arrest. We demonstrate here that VprBP binds stoichiometrically with DDB1 through its WD40 domain and through DDB1 to CUL4A, subunits of the COP9/signalsome, and DDA1.
View Article and Find Full Text PDFTuberous sclerosis (TSC) is an autosomal dominant disease characterized by hamartoma formation in various organs and is caused by mutations targeting either the TSC1 or TSC2 genes. TSC1 and TSC2 proteins form a functionally interdependent dimeric complex. Phosphorylation of either TSC subunit by different kinases regulates the function of TSC and represents a major mechanism to integrate various signals into a centralized cell growth pathway.
View Article and Find Full Text PDFCullins assemble the largest family of ubiquitin ligases by binding with ROC1 and various substrate receptors. CUL4 function is linked with many cellular processes, but its substrate-recruiting mechanism remains elusive. We identified a protein motif, the DWD box (DDB1-binding WD40 protein), and demonstrated the binding of 15 DWD proteins with DDB1-CUL4A.
View Article and Find Full Text PDFThe concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1.
View Article and Find Full Text PDF