Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Compost-derived dissolved organic matter (DOM) is a heterogeneous assemblage of different redox-active organic molecules. We hypothesize that DOM can interact with Cr(VI) and reduce it to Cr(III), thereby influencing the dynamics of Cr(VI) in soil and aquatic environments. Here, DOM, along with soil humic substances isolated from red soil and black soil, were fractionated into humic acid fractions (, HA, HA, and HA) and fulvic acid fractions (, FA, FA, and FA), respectively.
View Article and Find Full Text PDFBrevibacillus laterosporus ZR-11, a bio-control strain, was innovatively inoculated at maturity stage of composting to clarify its effect on physicochemical parameters and indigenous bacterial community structure in compost pile. Results revealed that ZR-11 inoculum rapidly increased pile temperature to 52 ºC and raised germination index (GI) value to beyond 85% on day 3, thereby achieving higher pile temperature and GI in the inoculated group than the non-inoculated group almost along maturity stage, and also decreased C/N ratio of the inoculated group to below 20 by composting end (day 8). Also, ZR-11 succeeded in colonizing compost pile along maturity stage.
View Article and Find Full Text PDFCadmium (Cd) being potentially toxic heavy metal, has become increasingly serious to vineyard soil and grapes in recent years. Soil type is one of the main factors affecting the absorption of Cd in grapes. To investigate the stabilization characteristics and form changes of Cd in different types of vineyard soils, a 90-days incubation experiment was conducted after exogenous Cd addition to 12 vineyard soils from typical vineyards in China.
View Article and Find Full Text PDFMicrobial inoculation was an effective way to improve product quality of composting and solve traditional composting shortage. However, the effect mechanism of microbial inoculation on compost microorganisms remains unclear. Here, Shifts in bacterial community, metabolic function and co-occurrence network during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms (EM) agent were analyzed by high-throughput sequencing and network analysis.
View Article and Find Full Text PDFField application of manure compost introduces a large quantity of dissolved organic matter (DOM), which can affect the migration of DOM-associated contaminants. In this study, the transport of humic acid (HA) and compost-derived dissolved organic matter (CDOM) in two porous media under various conditions, including ionic types, ionic strength, and influent concentrations, were investigated by column experiments and modeling analysis. Increasing Na concentration did not affect the transport of CDOM and HA in quartz sands, but inhibited CDOM transport in ferrihydrite (Fh)-coated sands.
View Article and Find Full Text PDFThe influence of bio-compost on the diversity, composition and structure of soil microbial communities is less understood. Here, Illumina MiSeq sequencing and a network analysis were used to comprehensively characterize the effects of 25 years of bio-compost application on the microbial diversity of soil and community composition. High dosages of bio-compost significantly increased the bacterial and fungal richness.
View Article and Find Full Text PDFOrganic greenhouse farming is an innovative system that may maintain a high yield and healthy agroecosystem. There have been no rigorous studies on the comparison of total and nitrogen-cycling bacterial community in vegetable soils between organic and conventional farming management at large scale. A survey of bacterial community and nitrogen cycles from soils under organic and conventional greenhouse farming was performed at 30 sites, covering seven soil types with 4 to 18 years of organic farming history.
View Article and Find Full Text PDFModified biochar has great potential for adsorbing cadmium (Cd) in the aquatic environment, but the micro-immobilization mechanisms, driven by surface modifications, remain unclear. There has been no attempt to determine the key adsorption factors by integrating the numerous physiochemical indicators. In this study, surface oxidized biochar (OPBC) and surface aminated biochar (APBC) were prepared from porous biochar (PBC), and the Cd adsorption mechanisms by the modified biochars at the molecular and electronic scales were investigated.
View Article and Find Full Text PDFBased on the interaction between mesoscopic biochar materials and nanomaterials, the synergistic mechanism of the two materials in the process of cadmium remediation was studied. KCO activated porous biochar (KBC) loaded with nano-zero-valent iron (nZVI)/nano-α-hydroxy-iron oxide (nHIO) was studied. Macroscopically, batch adsorption experiments were carried out to describe the adsorption properties of the composites.
View Article and Find Full Text PDFIn this study, the effect of surface modification on the properties of porous biochar was studied, and these modification techniques were synthetically evaluated by principal component analysis. The results showed that surface modification significantly affected the surface and adsorption properties of porous biochar. Potassium carbonate activated porous biochar (KBC) was modified by surface oxidation, surface amination, loading nano-zero valent iron (nZVI) and loading nano-iron oxyhydroxide (nHIO).
View Article and Find Full Text PDFPotassium carbonate activated biochar (450 °C, 600 °C and 750 °C) and nonactivated biochar (600 °C) were prepared by using corn stalk as the raw material. These biochar samples were labeled as KBC450, KBC600, KBC750 and BC600. The physical and chemical properties of the biochar were strongly influenced by the activation of potassium carbonate.
View Article and Find Full Text PDFHeavy metal ions coexisting with salts in the contaminant water are difficult to remove due to the interference of salts. Herein, biochars were pyrolyzed by corn straw at different temperatures, aiming to remove Cr(VI) in the presence of salts. Results show that biochars had surprisingly selective adsorption of Cr(VI).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2018
The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars.
View Article and Find Full Text PDFMaterials (Basel)
September 2017
Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures.
View Article and Find Full Text PDFThe study of simultaneous removal of heavy metals and organic contaminants has practical applications due to the coexistence of complex pollutants in the wastewater or soil. In this work, biochar was prepared to study the removal efficiencies of Cr(VI), naphthalene (NAP) and bisphenol A (BPA) in the single or mixed systems. HPO-treated biochar presented a much higher adsorption capacity of the pollutants than the untreated biochar and also showed a high resistance to coexisting salts.
View Article and Find Full Text PDFPurpose: To study the early change of bone matrix and soft tissue around articulation in adjuvant-induced arthritic (AIA) rats non-invasively by X-ray phase-contrast imaging (XPCI), a new imaging method.
Materials And Methods: Adjuvant-induced arthritis was established in male Sprague-Dawley (SD) rats (n=6, age 40 days) by subcutaneous injection of Freund's complete adjuvant (FCA) into the left hindpaw. In vivo XPCI evaluation of the early soft tissue and bone changes in AIA rats was consecutively performed and correlated with changes in volumes of right hindpaws and body weights.