In this 12-month long, preclinical large animal study using a canine model, we report that engineered osteochondral grafts (comprised of allogeneic chondrocyte-seeded hydrogels with the capacity for sustained release of the corticosteroid dexamethasone [DEX], cultured to functional mechanical properties, and incorporated over porous titanium bases), can successfully repair damaged cartilage. DEX release from within engineered cartilage was hypothesized to improve initial cartilage repair by modulating the local inflammatory environment, which was also associated with suppressed degenerative changes exhibited by menisci and synovium. We note that not all histological and clinical outcomes at an intermediary time point of three months paralleled 12-month outcomes, which emphasizes the importance of studies in valid preclinical models that incorporate clinically relevant follow-up durations.
View Article and Find Full Text PDFKnee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated.
View Article and Find Full Text PDFHigh-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods.
View Article and Find Full Text PDFAnterior cruciate ligament (ACL) tear leads to post-traumatic osteoarthritis (PTOA), a significant clinical burden worldwide that currently has no cure. Recent studies suggest a role of subchondral bone adaptations in the development of PTOA. Particularly, microstructural changes in the rod-and-plate microstructure of subchondral bone may precede and contribute to OA progression.
View Article and Find Full Text PDFArchitectured materials offer tailored mechanical properties but are limited in engineering applications due to challenges in maintaining toughness across their attachments. The enthesis connects tendon and bone, two vastly different architectured materials, and exhibits toughness across a wide range of loadings. Understanding the mechanisms by which this is achieved could inform the development of engineered attachments.
View Article and Find Full Text PDFBackground: Age-related trabecular microstructural deterioration and conversion from plate-like trabeculae to rod-like trabeculae occur because of unbalanced rapid remodeling. As denosumab achieves greater remodeling suppression and lower cortical porosity than alendronate, we hypothesized that denosumab might also preserve trabecular plate microstructure, bone stiffness and strength more effectively than alendronate.
Methods: In this post hoc analysis of a phase 2 study, postmenopausal women randomized to placebo (P, n = 74), denosumab (D, n = 72), or alendronate (A, n = 68).
Trabecular plates and rods determine apparent elastic modulus and yield strength of trabecular bone, serving as important indicators of bone's mechanical integrity in health and disease. Although trabecular bone's apparent-level mechanical properties have been widely reported, tissue mechanical properties of individual trabeculae have not been fully characterized. We systematically measured tissue mineral density (TMD)-dependent elastic modulus of individual trabeculae using microindentation and characterized its anisotropy as a function of trabecular type (plate or rod), trabecular orientation in the global coordinate (longitudinal, oblique, or transverse along the anatomic loading axis), and indentation direction along the local trabecular coordinate (axial or lateral).
View Article and Find Full Text PDFHigh-resolution peripheral quantitative computed tomography (HR-pQCT) is a promising imaging modality that provides an in vivo three-dimensional (3D) assessment of bone microstructure by scanning fixed regions of the distal radius and tibia. However, how microstructural parameters and mechanical analysis based on these segment scans correlate to whole distal radius and tibia mechanics are not well-characterized. On 26 sets of cadaveric radius and tibia, HR-pQCT scans were performed on the standard scan segment, a segment distal to the standard segment, and a segment proximal to the standard segment.
View Article and Find Full Text PDFThe high-resolution peripheral quantitative computed tomography (HR-pQCT) provides unprecedented visualization of bone microstructure and the basis for constructing patient-specific microfinite element (μFE) models. Based on HR-pQCT images, we have developed a plate-and-rod μFE (PR μFE) method for whole bone segments using individual trabecula segmentation (ITS) and an adaptive cortical meshing technique. In contrast to the conventional voxel approach, the complex microarchitecture of the trabecular compartment is simplified into shell and beam elements based on the trabecular plate-and-rod configuration.
View Article and Find Full Text PDF