Sheng Wu Gong Cheng Xue Bao
February 2023
Squamosa promoter binding protein-like (SPL) family is a group of important transcription factors involved in the regulation of plant growth and development and the response to environmental stress, but there are few studies in perennial fruit trees such as citrus. In this study, Ziyang Xiangcheng ( Sib.ex Tanaka), an important rootstock of Citrus, was used as the material for analysis.
View Article and Find Full Text PDFCuticular wax on plant aerial surfaces plays a vital role in the defense against various stresses, and the genes related to wax metabolism have been well documented in several model plants. However, there is very limited research on the key enzymes and transcription factors (TFs) associated with carbon chain distribution and wax biosynthesis in citrus fruit. In this study, an analysis of wax metabolites indicated that even carbon-chain (C24-C28) metabolites are the dominant wax components in citrus fruit, and a 3-ketoacyl-CoA synthase (KCS) family gene (CsKCS20) plays an important role in the carbon chain distribution during wax biosynthesis in a wax-deficient mutant (MT).
View Article and Find Full Text PDFRare earth elements (REEs) can affect the growth and development of plants. However, few studies have been carried out on the effects of REEs on citrus seedlings. In this study, the growth parameters, toxicity symptoms, chlorophyll content, and La content of three citrus rootstocks are analyzed under different concentrations of La, a representative REE.
View Article and Find Full Text PDFBoth cuticle and membrane lipids play essential roles in quality maintenance and disease resistance in fresh fruits. Many reports have indicated the modification of alternative branch pathways in epicuticular wax mutants; however, the specific alterations concerning lipids have not been clarified thus far. Here, we conducted a comprehensive, time-resolved lipidomic, and transcriptomic analysis on the "Newhall" navel orange (WT) and its glossy mutant (MT) "Gannan No.
View Article and Find Full Text PDFBackground: Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown.
View Article and Find Full Text PDFCarotenoids are the principal pigments in the loquat. Although the metabolic pathway of plant carotenoids has been extensively investigated, few studies have been explored the regulatory mechanisms of loquat carotenoids because knowledge of the loquat genome is incomplete. The chromoplast-specific lycopene β-cyclase gene (-) could catalyze cyclization of lycopene to β-carotene.
View Article and Find Full Text PDFBackground: Copper (Cu) toxicity has become a potential threat for citrus production, but little is known about related mechanisms. This study aims to uncover the global landscape of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in response to Cu toxicity so as to construct a regulatory network of competing endogenous RNAs (ceRNAs) and to provide valuable knowledge pertinent to Cu response in citrus.
Results: Tolerance of four commonly used rootstocks to Cu toxicity was evaluated, and 'Ziyang Xiangcheng' (Citrus junos) was found to be the most tolerant genotype.
The severe strain of citrus tristeza virus (CTV) causes quick decline of citrus trees. However, the CTV mild strain causes no symptoms and commonly presents in citrus trees. Viral suppressor of RNA silencing (VSR) plays an important role in the successful invasion of viruses into plants.
View Article and Find Full Text PDFLittle is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant 'Gannan No.1' (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type 'Newhall'.
View Article and Find Full Text PDFPitaya () has attracted much interest from consumers as it is a novelty fruit with high nutrient content and a tolerance to drought stress. As a group of attractive pigment- and health-promoting natural compounds, betalains represent a visual feature for pitaya fruit quality. However, little information on the correlation between betalains and relevant metabolites exists so far.
View Article and Find Full Text PDFNaturally, resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration. We found a spontaneous mutant of 'Newhall' navel orange ( Osbeck) (MT) with broad-spectrum protections against fungal pathogens in the orchard, postharvest-storage, and artificial inoculation conditions. To understand the defense mechanism of MT fruit, we constructed a genome-scale metabolic network that integrated metabolome and transcriptome datasets.
View Article and Find Full Text PDFFruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism.
View Article and Find Full Text PDF