Vacuum-gap Fabry-Perot cavities are indispensable for the realization of frequency-stable lasers, with applications across a diverse range of scientific and industrial pursuits. However, making these cavity-based laser stabilization systems compact, portable, and rugged enough for use outside of controlled laboratory conditions has proven difficult. Here, we present a fiber-coupled 1396 nm laser stabilization system requiring no free-space optics or alignment, built for a portable strontium optical lattice clock.
View Article and Find Full Text PDFMuscle fiber properties exert a significant influence on pork quality, with cross-sectional area (CSA) being a crucial parameter closely associated with various meat quality indicators, such as shear force. Effectively identifying and segmenting muscle fibers in a robust manner constitutes a vital initial step in determining CSA. This step is highly intricate and time-consuming, necessitating an accurate and automated analytical approach.
View Article and Find Full Text PDFNumerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption.
View Article and Find Full Text PDFA novel method is proposed based on the improved YOLOV5 and feeding functional area proposals to identify the feeding behaviors of nursery piglets in a complex light and different posture environment. The method consists of three steps: first, the corner coordinates of the feeding functional area were set up by using the shape characteristics of the trough proposals and the ratio of the corner point to the image width and height to separate the irregular feeding area; second, a transformer module model was introduced based on YOLOV5 for highly accurate head detection; and third, the feeding behavior was recognized and counted by calculating the proportion of the head in the located feeding area. The pig head dataset was constructed, including 5040 training sets with 54,670 piglet head boxes, and 1200 test sets, and 25,330 piglet head boxes.
View Article and Find Full Text PDFIn this paper, a lightweight channel-wise attention model is proposed for the real-time detection of five representative pig postures: standing, lying on the belly, lying on the side, sitting, and mounting. An optimized compressed block with symmetrical structure is proposed based on model structure and parameter statistics, and the efficient channel attention modules are considered as a channel-wise mechanism to improve the model architecture.The results show that the algorithm's average precision in detecting standing, lying on the belly, lying on the side, sitting, and mounting is 97.
View Article and Find Full Text PDFBackground: KChIP2 (K channel interacting protein) is the auxiliary subunit of the fast transient outward K current ( I) in the heart, and insufficient KChIP2 expression induces I downregulation and arrhythmogenesis in cardiac hypertrophy. Studies have shown muscle-specific mitsugumin 53 (MG53) has promiscuity of function in the context of normal and diseased heart. This study investigates the possible roles of cardiac MG53 in regulation of KChIP2 expression and I, and the arrhythmogenic potential in hypertrophy.
View Article and Find Full Text PDFFlow cytometry is an indispensable tool in biology for counting and analyzing single cells in large heterogeneous populations. However, it predominantly relies on fluorescent labeling to differentiate cells and, hence, comes with several fundamental drawbacks. Here, we present a high-throughput Raman flow cytometer on a microfluidic chip that chemically probes single live cells in a label-free manner.
View Article and Find Full Text PDFHigh-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan.
View Article and Find Full Text PDFBackground: KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca channels. Given the important roles of altered Ca signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy.
View Article and Find Full Text PDFAim: The receptor for advanced glycation end-products (RAGE) plays an important role in development of atherosclerosis, and C-reactive protein (CRP) has been found to stimulate its expression in endothelial cells. In this study we investigated how CRP regulated the expression of RAGE in human coronary artery endothelial cells (HCAECs).
Methods: HCAECs were treated in vitro with CRP (50 μg/mL) in combination with a variety of inhibitors.