Publications by authors named "Yizheng Wu"

Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging.

View Article and Find Full Text PDF

Physical neural networks (PNN) using physical materials and devices to mimic synapses and neurons offer an energy-efficient way to implement artificial neural networks. Yet, training PNN is difficult and heavily relies on external computing resources. An emerging concept to solve this issue is called physical self-learning that uses intrinsic physical parameters as trainable weights.

View Article and Find Full Text PDF

The Dzyaloshinskii-Moriya antisymmetric exchange interaction (DMI) stabilises topological spin textures with promising future spintronics applications. According to crystal symmetry, the DMI can be categorized as four different types that favour different chiral textures. Unlike the other three extensively-investigated types, out-of-plane DMI, as the last type that favours in-plane chirality, remained missing so far.

View Article and Find Full Text PDF

The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) modification is one of the most prevalent forms of epigenetic modification and plays an important role in the development of degenerative diseases such as osteoarthritis (OA). However, the evidence concerning the role of m6A modification in OA is insufficient. Here, m6A modification was increased in human OA cartilage and degenerated chondrocytes.

View Article and Find Full Text PDF

As the primary cause for chronic pain and disability in elderly individuals, osteoarthritis (OA) is one of the fastest-growing diseases due to the aging world population. To date, the impact of microenvironmental changes on the pathogenesis of OA remains poorly understood, greatly hindering the development of effective therapeutic approaches against OA. In this study, we profiled the differential metabolites in the synovial fluid from OA patients and identified the downregulation of vitamin B1 (VB1) as a metabolic feature in the OA microenvironment.

View Article and Find Full Text PDF

Large-scale datasets with point-wise semantic and instance labels are crucial to 3D instance segmentation but also expensive. To leverage unlabeled data, previous semi-supervised 3D instance segmentation approaches have explored self-training frameworks, which rely on high-quality pseudo labels for consistency regularization. They intuitively utilize both instance and semantic pseudo labels in a joint learning manner.

View Article and Find Full Text PDF

The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO and IrO single-crystal films.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression.

View Article and Find Full Text PDF

Cartilage homeostasis is essential for chondrocytes to maintain proper phenotype and metabolism. Because adult articular cartilage is avascular, chondrocytes must survive in low oxygen conditions, and changing oxygen tension can significantly affect metabolism and proteoglycan synthesis in these cells. However, whether long noncoding RNA participate in cartilage homeostasis under hypoxia has not been reported yet.

View Article and Find Full Text PDF

Ubiquitination is a reversible post-translational modification implicated in cell differentiation, homeostasis, and organ development. Several deubiquitinases (DUBs) decrease protein ubiquitination through the hydrolysis of ubiquitin linkages. However, the role of DUBs in bone resorption and formation is still unclear.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase accelerated OA development in mice.

View Article and Find Full Text PDF

The demand for emerging applications at the terahertz frequencies motivates the development of novel and multifunctional devices for the generation and manipulation of terahertz waves. In this work, we report the realization of multifunctional spintronic-metasurface emitters, which allow simultaneous beam-steering and full polarization control over a broadband terahertz beam. This is achieved through engineering individual meta-atoms with nanoscale magnetic heterostructures and, thus, implementing microscopical control over the laser-induced spin and charge dynamics.

View Article and Find Full Text PDF

Optical neural networks (ONN) have become the most promising solution to replacing electronic neural networks, which have the advantages of large bandwidth, low energy consumption, strong parallel processing ability, and super high speed. Silicon-based micro-nano integrated photonic platforms have demonstrated good compatibility with complementary metal oxide semiconductor (CMOS) processing. Therefore, without completely changing the existing silicon-based fabrication technology, optoelectronic hybrid devices or all-optical devices of better performance can be achieved on such platforms.

View Article and Find Full Text PDF

The antiferromagnet is considered to be a promising hosting material for the next generation of magnetic storage due to its high stability and stray-field-free property. Understanding the switching properties of the antiferromagnetic (AFM) domain state is critical for developing AFM spintronics. By utilizing the magneto-optical birefringence effect, we experimentally demonstrate the switching rate of the AFM domain can be enhanced by more than 2 orders of magnitude through applying an alternating square-wave field on a single crystalline Fe/CoO bilayer.

View Article and Find Full Text PDF

Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films.

View Article and Find Full Text PDF

Mechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density.

View Article and Find Full Text PDF

Tumor metastasis of colorectal cancer (CRC) is the main cause of death in most patients and the major difficulty in comprehensive CRC treatment. Circular RNAs (circRNAs) affect many biological functions in solid tumors. However, their mechanisms in CRC metastasis remain unclear.

View Article and Find Full Text PDF

Objectives: Circular RNAs (circRNAs) are noncoding RNAs that compete against other endogenous RNA species, such as microRNAs, and have been implicated in many diseases. In this study, we investigated the role of a new circRNA (circSLC7A2) in osteoarthritis (OA).

Materials And Methods: The relative expression of circSLC7A2 was significantly lower in OA tissues than it was in matched controls, as shown by real-time quantitative polymerase chain reaction (RT-qPCR).

View Article and Find Full Text PDF

Vehicle loads have significant impacts on the emissions of heavy-duty trucks, even in the same traffic conditions. Few studies exist covering the differences in emissions of diesel semi-trailer towing trucks (DSTTTs) with different loads, although these vehicles have a wide load range. In this context, the operating modes and emission rates of DSTTTs were analyzed under varying loads scenarios to understand the effect of vehicle loads on emission factors.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common, age-related, and painful disease characterized by cartilage destruction, osteophyte formation, and synovial hyperplasia. This study revealed that circPDE4D, a circular RNA derived from human linear PDE4D, plays a critical role in maintaining the extracellular cellular matrix (ECM) during OA progression. circPDE4D was significantly downregulated in OA cartilage tissues and during stimulation with inflammatory cytokines.

View Article and Find Full Text PDF

Nucleus pulposus (NP) degeneration plays pivotal roles in intervertebral disc degeneration. The effect and mechanism of oxidative stress and epigenetics in NP degeneration is still unclear. We performed this study to evaluate the function of oxidative stress in NP and to explore the potential mechanism of ROS induced expression of matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF

Objectives: FBXO6, a component of the ubiquitin E3 ligases, has been shown to bind high mannose N-linked glycoproteins and act as ubiquitin ligase subunits. Most proteins in the secretory pathway, such as matrix metalloproteinases, are modified with N-glycans and play important roles in the development of osteoarthritis (OA). However, whether FBXO6 exerts regulatory effects on the pathogenesis of OA remains undefined.

View Article and Find Full Text PDF

Background: CircMYO10 is a circular RNA generated by back-splicing of gene MYO10 and is upregulated in osteosarcoma cell lines, but its functional role in osteosarcoma is still unknown. This study aimed to clarify the mechanism of circMYO10 in osteosarcoma.

Methods: CircMYO10 expression in 10 paired osteosarcoma and chondroma tissues was assessed by quantitative reverse transcription polymerase chain reaction (PCR).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3g0b7v0tv84djl4ppgksh0dq457kjar4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once