Traumatic brain injury (TBI), a risk factor for later-life dementia, leads to salient brain atrophy, particularly in the white matter. It is not clear how white matter atrophy progresses or why some brain regions are damaged while others are spared. We hypothesized that spatial variations of cell-specific gene expression contributed to the selective white matter loss vulnerability following mild TBI (mTBI).
View Article and Find Full Text PDFBackground: Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear.
Methods: Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction.
Blood proteins are emerging as potential biomarkers for mild traumatic brain injury (mTBI). Molecular pathology of mTBI underscores the critical roles of neuronal injury, neuroinflammation, and vascular health in disease progression. However, the temporal profile of blood biomarkers associated with the aforementioned molecular pathology after CT-negative mTBI, their diagnostic and prognostic potential, and their utility in monitoring white matter integrity and progressive brain atrophy remain unclear.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) disrupts the integrity of white matter microstructure, which affects brain functional connectivity supporting cognitive function. Although the relationship between structural and functional connectivity (SC and FC), here called SC-FC coupling, has been studied on global level in brain disorders, the long-term disruption of SC-FC coupling in mTBI at regional scale was still unclear. The current study investigated the alteration pattern of regional SC-FC coupling in 104 acute mTBI patients (41 with 6-12 months of follow-up) and 56 healthy controls (HCs).
View Article and Find Full Text PDFTraumatic brain injury (TBI) disrupt the coordinated activity of triple-network and produce impairments across several cognitive domains. The triple-network model posits a key role of the salience network (SN) that regulates interactions with the central executive network (CEN) and default mode network (DMN). However, the aberrant dynamic interactions among triple-network and associations with neurobehavioral symptoms in mild TBI was still unclear.
View Article and Find Full Text PDFCircular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)- 145-5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2022
Objectives: The patients with mild traumatic brain injury (mTBI) accounts for more than 80% of the patients with brain injury. Most patients with mTBI have no abnormalities in CT examination. Therefore, most patients choose to self-care and recover rather than seeking medical treatment.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI)-associated damage to hub regions can lead to disrupted modular structures of functional brain networks and may result in widespread cognitive and behavioral deficits. The spatial layout of brain connections and modules is essential for understanding the reorganization of brain networks to trauma. We investigated the roles of hubs in inter-subnetwork information coordination and integration using participation coefficients (PCs) in 74 patients with acute mTBI and 51 matched healthy controls.
View Article and Find Full Text PDFObjective: To assess the safety and efficacy of gabapentin in treatment of refractory epilepsy.
Methods: Sixty-six patients with refractory epilepsy were treated with gabapentin 200 mg/d and 72 patients with placebo, totally 138 patients in five hospitals in different cities in China. Double-blind study was performed to observe the times of seizure, and Mini-Mental State Examination (MMSE) and Activities of Daily Life (ADL) assessment were conducted every 4 weeks.