Publications by authors named "Yizhang Jiang"

Article Synopsis
  • Nutrition is essential for body health, and image-based technology can help assess dietary content and prevent chronic diseases, but traditional methods struggle with accuracy due to a lack of real labels.
  • The researchers combined image segmentation and regression tasks using a specialized dataset to build a model that predicts nutritional content from food images.
  • Their model achieved a low average percentage mean absolute error (PMAE) of 17.06% for key nutritional components, demonstrating promising accuracy and effectiveness.
View Article and Find Full Text PDF

The abdomen houses multiple vital organs, which are associated with various diseases posing significant risks to human health. Early detection of abdominal organ conditions allows for timely intervention and treatment, preventing deterioration of patients' health. Segmenting abdominal organs aids physicians in more accurately diagnosing organ lesions.

View Article and Find Full Text PDF

Somatic tumors have a high-dimensional, sparse, and small sample size nature, making cancer subtype stratification based on somatic genomic data a challenge. Current methods for improving cancer clustering performance focus on dimension reduction, integrating multi-omics data, or generating realistic samples, yet ignore the associations between mutated genes within the patient-gene matrix. We refer to these associations as gene mutation structural information, which implicitly includes cancer subtype information and can enhance subtype clustering.

View Article and Find Full Text PDF

Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model.

View Article and Find Full Text PDF

Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved.

View Article and Find Full Text PDF

In this review, current studies on hospital readmission due to infection of COVID-19 were discussed, compared, and further evaluated in order to understand the current trends and progress in mitigation of hospital readmissions due to COVID-19. Boolean expression of ("COVID-19" OR "covid19" OR "covid" OR "coronavirus" OR "Sars-CoV-2") AND ("readmission" OR "re-admission" OR "rehospitalization" OR "rehospitalization") were used in five databases, namely Web of Science, Medline, Science Direct, Google Scholar and Scopus. From the search, a total of 253 articles were screened down to 26 articles.

View Article and Find Full Text PDF

In the late December of 2019, a novel coronavirus was discovered in Wuhan, China. In March 2020, WHO announced this epidemic had become a global pandemic and that the novel coronavirus may be mild to most people. However, some people may experience a severe illness that results in hospitalization or maybe death.

View Article and Find Full Text PDF

In the past, the possibilistic -means clustering algorithm (PCM) has proven its superiority on various medical datasets by overcoming the unstable clustering effect caused by both the hard division of traditional hard clustering models and the susceptibility of fuzzy -means clustering algorithm (FCM) to noise. However, with the deep integration and development of the Internet of Things (IoT) as well as big data with the medical field, the width and height of medical datasets are growing bigger and bigger. In the face of high-dimensional and giant complex datasets, it is challenging for the PCM algorithm based on machine learning to extract valuable features from thousands of dimensions, which increases the computational complexity and useless time consumption and makes it difficult to avoid the quality problem of clustering.

View Article and Find Full Text PDF

Therapeutic peptides act on the skeletal system, digestive system and blood system, have antibacterial properties and help relieve inflammation. In order to reduce the resource consumption of wet experiments for the identification of therapeutic peptides, many computational-based methods have been developed to solve the identification of therapeutic peptides. Due to the insufficiency of traditional machine learning methods in dealing with feature noise.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed.

View Article and Find Full Text PDF

With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study, we combine multi-kernel learning and transfer learning, and propose a feature-level multi-modality fusion model with insufficient training samples.

View Article and Find Full Text PDF

Stock price prediction is important in both financial and commercial domains, and using neural networks to forecast stock prices has been a topic of ongoing research and development. Traditional prediction models are often based on a single type of data and do not account for the interplay of many variables. This study covers a radial basis neural network modeling technique with multiview collaborative learning capabilities for incorporating the impacts of numerous elements into the prediction model.

View Article and Find Full Text PDF

Academic emotions can have different influences on learning effects, but these have not been systematically studied. In this paper, we objectively evaluate the influence of various academic emotions on learning effects and studied the relationship between positive and negative academic emotions and learning effects by using five electronic databases, including WOS, EMBASE, PubMed, PsycINFO, and Google Scholar. According to established standards, a total of 14 articles from 506 articles were included in the analysis.

View Article and Find Full Text PDF

Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related domains.

View Article and Find Full Text PDF

We propose a new method for generating synthetic CT images from modified Dixon (mDixon) MR data. The synthetic CT is used for attenuation correction (AC) when reconstructing PET data on abdomen and pelvis. While MR does not intrinsically contain any information about photon attenuation, AC is needed in PET/MR systems in order to be quantitatively accurate and to meet qualification standards required for use in many multi-center trials.

View Article and Find Full Text PDF

Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved.

View Article and Find Full Text PDF

We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e.

View Article and Find Full Text PDF

We introduce a new, semi-supervised classification method that extensively exploits knowledge. The method has three steps. First, the manifold regularization mechanism, adapted from the Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded in all training data, especially in numerous label-unknown data.

View Article and Find Full Text PDF

As a dedicated countermeasure for heterogeneous multi-view data, multi-view clustering is currently a hot topic in machine learning. However, many existing methods either neglect the effective collaborations among views during clustering or do not distinguish the respective importance of attributes in views, instead treating them equivalently. Motivated by such challenges, based on maximum entropy clustering (MEC), two specialized criteria-inter-view collaborative learning (IEVCL) and intra-view-weighted attributes (IAVWA)-are first devised as the bases.

View Article and Find Full Text PDF

Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough.

View Article and Find Full Text PDF

Conventional, soft-partition clustering approaches, such as fuzzy -means (FCM), maximum entropy clustering (MEC) and fuzzy clustering by quadratic regularization (FC-QR), are usually incompetent in those situations where the data are quite insufficient or much polluted by underlying noise or outliers. In order to address this challenge, the quadratic weights and Gini-Simpson diversity based fuzzy clustering model (QWGSD-FC), is first proposed as a basis of our work. Based on QWGSD-FC and inspired by transfer learning, two types of cross-domain, soft-partition clustering frameworks and their corresponding algorithms, referred to as type-I/type-II knowledge-transfer-oriented -means (TI-KT-CM and TII-KT-CM), are subsequently presented, respectively.

View Article and Find Full Text PDF

Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly.

View Article and Find Full Text PDF

The existing, semisupervised, spectral clustering approaches have two major drawbacks, i.e., either they cannot cope with multiple categories of supervision or they sometimes exhibit unstable effectiveness.

View Article and Find Full Text PDF

The classical maximum entropy clustering (MEC) algorithm usually cannot achieve satisfactory results in the situations where the data is insufficient, incomplete, or distorted. To address this problem, inspired by transfer learning, the specific cluster prototypes and fuzzy memberships jointly leveraged (CPM-JL) framework for cross-domain MEC (CDMEC) is firstly devised in this paper, and then the corresponding algorithm referred to as CPM-JL-CDMEC and the dedicated validity index named fuzzy memberships-based cross-domain difference measurement (FM-CDDM) are concurrently proposed. In general, the contributions of this paper are fourfold: 1) benefiting from the delicate CPM-JL framework, CPM-JL-CDMEC features high-clustering effectiveness and robustness even in some complex data situations; 2) the reliability of FM-CDDM has been demonstrated to be close to well-established external criteria, e.

View Article and Find Full Text PDF