Publications by authors named "Yizhan Ma"

. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved.

View Article and Find Full Text PDF

The porcine nerve-derived extracellular matrix (ECM) fabricated as films has good performance in peripheral nerve regeneration. However, when constructed as conduits to bridge nerve defects, ECM lacks sufficient mechanical strength. In this study, a novel electrospun bilayer-structured nerve conduit (BNC) with outer poly (L-lactic acid-co-ε-caprolactone) (PLA-PCL) and inner ECM was fabricated for nerve regeneration.

View Article and Find Full Text PDF

The functional properties of endogenous Schwann cells (SCs) during nerve repair are dynamic. Optimizing the functional properties of SCs at different stages of nerve repair may have therapeutic benefit in improving the repair of damaged nerves. Previous studies showed that miR-221-3p promotes the proliferation and migration of SCs, and miR-338-3p promotes the myelination of SCs.

View Article and Find Full Text PDF

Coronary artery bypass graft (CABG) surgery is an impactful treatment for coronary heart disease. Intimal hyperplasia is the central reason for the restenosis of vein grafts (VGs) after CABG. The introduction of external vascular sheaths around VGs can effectively inhibit intimal hyperplasia and ensure the patency of VGs.

View Article and Find Full Text PDF

Nerve regeneration can be promoted using nerve guide conduits (NGCs). Carbon nanotubes (CNTs) are often used to prepare conductive NGCs, however, the major concern for their applications is the final location of the implanted CNTs in vivo. Herein, photoluminescent multiwalled CNTs (MWCNTs) were prepared and electrospun with poly(lactide--glycolide) (PLGA), followed by shaping into multichannel NGCs for repairing of injured rat sciatic nerve, thereby the distribution of CNTs in vivo could be detected via bioimaging.

View Article and Find Full Text PDF

Acellular nerve allografts are promising alternatives to autologous nerve grafts, but still have many drawbacks which greatly limit their curative effects. Here, we developed an optimized acellular nerve allograft with multiple axial channels by a modified decellularization method. These allografts were confirmed to preserve more extracellular matrix components and factors, and remove cellular components effectively.

View Article and Find Full Text PDF

This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected.

View Article and Find Full Text PDF

The objective of this study was to fabricate an acellular sheep periosteum and explore its potential application in guided bone regeneration. Sheep periosteum was collected and decellularized by a modified decellularization protocol. The effectiveness of cell removal was proved by hematoxylin and eosin and 4',6-diamidino-2-phenylindole staining, DNA quantitative test, and agarose gel electrophoresis.

View Article and Find Full Text PDF