Publications by authors named "Yizhan Lu"

Background: Rectal cancer is a common cancer worldwide and lacks effective prognostic markers. The development of prognostic markers by computational pathology methods has attracted increasing attention. This paper aims to construct a prognostic signature from whole slide images for predicting progression-free survival (PFS) of rectal cancer through an unsupervised artificial intelligence algorithm.

View Article and Find Full Text PDF

Background: TNM staging is the main reference standard for prognostic prediction of colorectal cancer (CRC), but the prognosis heterogeneity of patients with the same stage is still large. This study aimed to classify the tumor microenvironment of patients with stage III CRC and quantify the classified tumor tissues based on deep learning to explore the prognostic value of the developed tumor risk signature (TRS).

Methods: A tissue classification model was developed to identify nine tissues (adipose, background, debris, lymphocytes, mucus, smooth muscle, normal mucosa, stroma, and tumor) in whole-slide images (WSIs) of stage III CRC patients.

View Article and Find Full Text PDF