Publications by authors named "Yiyu Wu"

In order to ensure the safety and preserve the value of historical buildings, inclination is an essential parameter during the continuous structural health monitoring process. However, the wire and price of a traditional sensor limit application. This paper proposes a low-cost inclination sensor based on a patch antenna with a reconfigurable water load.

View Article and Find Full Text PDF

The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader.

View Article and Find Full Text PDF

The commercialization of Li-S batteries as a promising energy system is terribly impeded by the issues of the shuttle effect and Li dendrite. Keggin Al -pillared montmorillonite (AlMMT), used as the modified film of the separator together with super-P and poly (vinylidene fluoride) (PVDF), has a good chemical affinity to lithium polysulfide (LiPS) to retard the polysulfide shuttling, excellent electrolyte wettability, and a stable structure, which can improve the rate capability and cycling stability of Li-S batteries. Density function theory (DFT) calculations reveal the strong adsorption ability of AlMMT for LiPS.

View Article and Find Full Text PDF

Rupture-prone plaques in the coronary arteries, called ``vulnerable plaques'', are recognized as the key factor in acute myocardial infarction. Vulnerable plaques have a thin fibrous cap over a large fatty core and are highly susceptible to rupture. In general, this type of plaque rupture is mainly associated with stress concentrated on the fibrous cap.

View Article and Find Full Text PDF

Rupture-prone plaques in the coronary arteries, called ``vulnerable plaques'', are recognized as the key factor in acute myocardial infarction. Vulnerable plaques have a thin fibrous cap over a large fatty core and are highly susceptible to rupture. In general, this type of plaque rupture is mainly associated with stress concentrated on the fibrous cap.

View Article and Find Full Text PDF