A comprehensive study of surface passivation effect on porous fluorescent silicon carbide (SiC) was carried out to elucidate the luminescence properties by temperature dependent photoluminescence (PL) measurement. The porous structures were prepared using an anodic oxidation etching method and passivated by atomic layer deposited (ALD) AlO films. An impressive enhancement of PL intensity was observed in porous SiC with ALD AlO, especially at low temperatures.
View Article and Find Full Text PDFThe overuse of antibiotics is accelerating the bacterial resistance, and therefore there is a need to reduce the amount of antibiotics used for treatment. Here, we demonstrate in vitro that specific wavelengths in a narrow range around 296 nm are able to eradicate bacteria in the biofilm state (grown for 24 hours) more effectively, than antibiotics and the combination of irradiation and antibiotics is even better, introducing a novel concept light assisted antibiotics. The investigated wavelength range was 249 nm to 338 nm with an approximate step of 5 nm.
View Article and Find Full Text PDFWe report for the first time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fluorescent SiC) layer containing a hybrid structure. The surface of fluorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20 nm thick AlO, the photoluminescence intensity from the porous layer was significant enhanced by a factor of more than 12.
View Article and Find Full Text PDFSurface plasmon coupling with light-emitters and surface nano-patterning have widely been used separately to improve low efficiency InGaN light-emitting diodes. We demonstrate a method where dielectric nano-patterning and Ag nanoparticles (NPs) are combined to provide both light extraction and internal quantum efficiency enhancement for InGaN/GaN quantum-well light-emitters. By fabricating dielectric nano-rod pattern on the GaN surface, an optical coating that improves the light extraction is obtained, and furthermore has a low refractive index which blue-shifts the plasmonic resonance of Ag NPs towards the emission wavelength.
View Article and Find Full Text PDFMicromachines (Basel)
September 2016
An approach for fabricating sub-wavelength antireflective structures on SiC material is demonstrated. A time-efficient scalable nanopatterning method by rapid thermal annealing of thin metal film is applied followed by a dry etching process. Size-dependent optical properties of the antireflective SiC structures have been investigated.
View Article and Find Full Text PDFSurface plasmonics from metal nanoparticles have been demonstrated as an effective way of improving the performance of low-efficiency light emitters. However, reducing the inherent losses of the metal nanoparticles remains a challenge. Here we study the enhancement properties by Ag nanoparticles for InGaN/GaN quantum-well structures.
View Article and Find Full Text PDFWe demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using this method, a significant broadband surface antireflection and a considerable omnidirectional luminescence enhancement are obtained.
View Article and Find Full Text PDFIn the present work, an approach of fabricating pseudoperiodic antireflective subwavelength structures (ARS) on fluorescent SiC by using self-assembled etch mask is demonstrated. By applying the pseudoperiodic (ARS), the average surface reflectance at 6° incidence over the spectral range of 390-785 nm is dramatically suppressed from 20.5% to 1.
View Article and Find Full Text PDFIn the present work, antireflective sub-wavelength structures have been fabricated on fluorescent 6H-SiC to enhance the white light extraction efficiency by using the reactive-ion etching method. Broadband and omnidirectional antireflection characteristics show that 6H-SiC with antireflective sub-wavelength structures suppress the average surface reflection significantly from 20.5 % to 1.
View Article and Find Full Text PDFWe have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %.
View Article and Find Full Text PDF