Publications by authors named "Yiyang Qin"

Motor imagery brain-computer interface (MI-BCI) based on non-invasive electroencephalogram (EEG) signals is a typical paradigm of BCI. However, existing decoding methods face significant challenges in terms of signal decoding accuracy, real-time processing, and deployment. To overcome these challenges, we propose FACT-Net, an innovative deep-learning network for the fast and accurate decoding of MI-EEG signals.

View Article and Find Full Text PDF

The properties of soil matrix have an impact on the fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs), which restricts the application of fluorescence spectral technology in detecting PAHs in soil. The present study explored the mechanism of the influence of soil matrix properties on the fluorescence intensity of PAHs from the perspective of specific surface area (SSA). A three-factor three-level experimental design was adopted for investigating the relationship between soil matrix properties, PAH fluorescence intensity, and soil SSA.

View Article and Find Full Text PDF

Androgen receptor (AR) is a crucial driver of prostate cancer (PCa), but acquired resistance to AR antagonists significantly undermines their clinical efficacy. We previously discovered coumarin derivative , which is capable of disrupting AR ligand-binding domain dimers, offering the potential for overcoming resistance. However, its poor oral bioavailability limited further development.

View Article and Find Full Text PDF
Article Synopsis
  • Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) often occur together in the environment, leading to research on their interactions, particularly focusing on three types of MPs: polypropylene, polystyrene, and poly(vinyl chloride) with phenanthrene (PHE) as a representative PAH.
  • The study used Fourier transform infrared spectroscopy (FT-IR) to analyze how these MPs adsorb PHE, revealing that adsorption is primarily driven by chemisorption, but no new covalent bonds form during the process.
  • Additionally, the research highlighted that the functional groups in the side chains of the MPs have a greater affinity for PHE due to their hydrophobic nature, offering insights into the adsorption mechanisms
View Article and Find Full Text PDF

The latest advancements in nuclear medicine indicate that radioactive isotopes and associated metal chelators play crucial roles in the diagnosis and treatment of diseases. The development of metal chelators mainly relies on traditional trial-and-error methods, lacking rational guidance and design. In this study, we propose the structure-aware transformer (SAT) combined with molecular fingerprint (SATCMF), a novel graph transformer network framework that incorporates prior chemical knowledge to construct coordination edges and learns the interactions between chelating agents and metal ions.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202509000-00027/figure1/v/2024-11-05T132919Z/r/image-tiff Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene, which encodes a ligand-dependent transcription factor. The mutant androgen receptor protein, characterized by polyglutamine expansion, is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (), the gene responsible for HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro.

View Article and Find Full Text PDF

Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection is the most common cause of death from liver disease worldwide. The use of capsid assembly modulators is considered a prominent strategy for the development of novel anti-HBV therapies. We performed a pharmacophore-based virtual screening strategy, and a benzamide scaffold hit, WAI-5, was chosen for further structural optimization.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing.

View Article and Find Full Text PDF

Pemetrexed (PEM) inhibits DNA and RNA synthesis and is currently one of the first-line agents for mesothelioma. PEM suppresses the activities of several enzymes involved in purine and pyrimidine synthesis, and elevated activity of these enzymes in tumors is often linked with resistance to PEM. The agent also stimulates AMP-activated protein kinase (AMPK) and consequently influences the mammalian target of rapamycin complex 1 (mTORC1) pathways.

View Article and Find Full Text PDF

Compelling evidence implicates that overexpression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) drives tumor progression, can serve as prognostic biomarkers or therapeutic targets for NSCLC patients. But at present, we still lack of effective drugs for bFGF. The preparation of monoclonal antibodies against bFGF or to understand its mechanism of action is urgently need.

View Article and Find Full Text PDF

Background: Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism.

Methods: We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities.

View Article and Find Full Text PDF

Basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) are associated with drug resistance in lung cancer. In the present study, mouse monoclonal antibodies (mAb) against human bFGF, targeting the binding site of bFGF with FGFR1 were produced, and the antitumor activity and inhibition of metastasis was studied in Lewis lung carcinoma (LLC). A total of four hybridoma cell strains that stably secreted bFGF mAb were obtained.

View Article and Find Full Text PDF

Objectives: To analyze the cellular function of the newly discovered DNA damage repair factor WDR70, and investigate the mutation in ovarian cancer to verify if function loss of the gene was associated with ovarian cancer.

Methods: The gene was silenced by using siRNA technique or overexpressed its wild and mutation type by with lentivirus and plasmid in hunman cells. The subcellular localization and biochemical function of WDR70 was analyzes by indirect immunofluorescence and immunoblotting.

View Article and Find Full Text PDF

Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv0imrl93r8qa3vmaevs8c930t07bgf8q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once