Background: The mechanism of cardiac reverse remodeling (CRR) mediated by the left ventricular assist device remains unclear. This study aims to identify the specific cell type responsible for CRR and develop the therapeutic target that promotes CRR.
Methods: The nuclei were extracted from the left ventricular tissue of 4 normal controls, 4 CRR patients, and 4 no cardiac reverse remodeling patients and then subjected to single-nucleus RNA sequencing for identifying key cell types responsible for CRR.
IEEE Trans Neural Syst Rehabil Eng
April 2024
In certain neurological disorders such as stroke, the impairment of upper limb function significantly impacts daily life quality and necessitates enhanced neurological control. This poses a formidable challenge in the realm of rehabilitation due to its intricate nature. Moreover, the plasticity of muscle synergy proves advantageous in assessing the enhancement of motor function among stroke patients pre and post rehabilitation training intervention, owing to the modular control strategy of central nervous system.
View Article and Find Full Text PDFAging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues.
View Article and Find Full Text PDFThe benefits of IL2RA antagonists in heart transplant patients are controversial. We aimed to elucidate the effects of IL2RA antagonists and identify targets that could be better than IL2RA antagonists. By using single-cell RNA sequencing of immune cells at different time points in patients receiving IL2RA antagonists, we identified nineteen types of cells.
View Article and Find Full Text PDFBackground: Thoracic aortic dissection (TAD) is a life-threatening disease caused by an intimal tear in the aorta. The histological characteristics differ significantly between the tear area (TA) and the distant area. Previous studies have emphasized that certain specific genes tend to cluster at the TA.
View Article and Find Full Text PDFIntroduction: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and it significantly increases the risk of cardiovascular complications and morbidity, even with appropriate treatment. Tissue remodeling has been a significant topic, while its systematic transcriptional signature remains unclear in AF.
Objectives: Our study aims to systematically investigate the molecular characteristics of AF at the cellular-level.
Objective: Post-stroke transcranial magnetic stimulation (TMS) has gradually become a brain intervention to assist patients in the recovery of motor function. The long lasting regulatory of TMS may involve the coupling changes between cortex and muscles. However, the effects of multi-day TMS on motor recovery after stroke is unclear.
View Article and Find Full Text PDFIschemia reperfusion injury (IRI), often related to surgical procedures, is one of the important causes of acute kidney injury (AKI). To decipher the dynamic process of AKI caused by IRI (with prolonged ischemia phase), we performed single-cell RNA sequencing (scRNA-seq) of clinically relevant IRI murine model with different ischemic intervals. We discovered that Slc5a2 proximal tubular cells were susceptible to AKI and highly expressed neutral amino acid transporter gene , which was dramatically decreased over the time course.
View Article and Find Full Text PDF. Transcranial magnetic stimulation (TMS) is an experimental therapy for promoting motor recovery from hemiparesis. At present, hemiparesis patients' responses to TMS are variable.
View Article and Find Full Text PDFThe muscle synergy hypothesis assumes that the nervous system controls muscles in groups to simplify behavioral tasks, which makes it possible for modularizing motor function assessment. This paper presents a new assessment method based on muscle synergy space (MSS) model to evaluate motor functions after stroke. It consists of spatiotemporal feature module, muscle activation module and synergy activation module, and focuses on the spatial and temporal characteristics of muscle synergies via synergy vectors and activation coefficients.
View Article and Find Full Text PDFBrain networks allow a topological understanding into the pathophysiology of stroke-induced motor deficits, and have been an influential tool for investigating brain functions. Unfortunately, currently applied methods generally lack in the recognition of the dynamic changes in the cortical networks related to muscle activity, which is crucial to clarify the alterations of the cooperative working patterns in the motor control system after stroke. In this study, we integrate corticomuscular and intermuscular interactions to cortico-cortical network and propose a novel closed-loop construction of cortico-muscular-cortical functional network, named closed-loop network (CLN).
View Article and Find Full Text PDFObjective: While the corticomuscularcoupling between motor cortex and muscle tissue has received considerable attention, which is typically quantitative measure to evaluate neural signals synchronization in the motor control system, little work has been published regarding the effect of underlying delay of two coupled physiological signals on coherence.
Methods: In this study, we developed a novel delay estimation method, named rate of voxels change (RVC), detecting time delay in two coupled physiological signals. Based on RVC framework, delay compensation was used to adjust magnitude squared coherence (MSC) image.
Gegen Qinlian decoction (GGQLD) has a definite effect on T2DM in clinic, and it has the effect of lowering blood sugar, improving insulin resistance, and improving the blood lipid level of rats with dyslipidemia, but the intervention mechanism of GGQLD on dyslipidemia has not been clarified. The changes in endogenous metabolites in the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian Decoction (GGQLD) were studied to elucidate the therapeutic effects and mechanism of action of GGQLD in dyslipidemia. Based on ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), the metabolic profiles of rat serum samples were collected.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2021
Objective: While neuroplasticity and functional reorganization during motor recovery can be indirectly reflected and evaluated by functional corticomuscular coupling (fCMC), little work has been published regarding the cortical origin of abnormal muscle synergy and compensatory mechanism in the separation movement of stroke patients.
Methods: In this study, we proposed to use extended partial directed coherence (ePDC) combined with an optimal spatial filtering approach to estimate fCMC in stroke patients and healthy controls, and further established muscle synergy model (MSM) to jointly explore the modulation mechanism between cortex and muscles.
Results: Compared to healthy controls, stroke patients had significantly reduced coupling strength in both descending and ascending pathway.
Background: Acute kidney injury (AKI) occurs in about 30% of patients with cardiac surgery, but the pathogenesis of cardiac surgery-associated acute kidney injury (CSA-AKI) remains unclear and there are no predictive biomarkers or diagnostic criteria specific for CSA-AKI beyond the general clinical variables for AKI like serum creatinine (SCr).
Methods And Results: We measured the plasma levels of 48 cytokines within 24 h after cardiac surgery in a total of 306 adult patients including 204 with and 102 without AKI, and then evaluated the diagnostic efficacy of these cytokines for the development of CSA-AKI via ANOVA and Pearson correlation analysis. Among these 48 cytokines, 20 of them were significantly different in the AKI patients compared with the non-AKI patients.
The vascular endothelial barrier dysfunction is associated with the pathogenesis of many cardiovascular diseases, such as atherosclerosis (AS). This study aims to identify specific antigen (Ag, in short)-specific polymorphonuclear neutrophils (PMN) in AS patients and to investigate the role of "Ag-specific" PMN activation in causing vascular endothelial barrier dysfunction. In this study, PMNs were isolated from blood samples collected from patients with AS and analyzed with immunological approaches.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2021
Corticomuscular coupling reflects nonlinear interactions and multi-layer neural information transmission between the motor cortex and effector muscle in the sensorimotor system. Transfer spectral entropy (TSE) method has been used to describe corticomuscular coupling within single scale. As an extension of TSE, multiscale transfer spectral entropy (MSTSE) is proposed in this paper to depict multi-layer of neural information transfer between two coupling signals.
View Article and Find Full Text PDFCortical-muscular functional coupling reflects the interaction between the cerebral cortex and the muscle activities. Corticomuscular coherence (CMC) has been extensively revealed in sustained contractions of various upper- and lower-limb muscles during static and dynamic force outputs. However, it is not well-understood that the CMC modulation mechanisms, i.
View Article and Find Full Text PDFCorticomuscular coherence (CMC) is an index utilized to indicate coherence between brain motor cortex and associated body muscles, conventionally. As an index of functional connections between the cortex and muscles, CMC research is the focus of neurophysiology in recent years. Although CMC has been extensively studied in healthy subjects and sports disorders, the purpose of its applications is still ambiguous, and the magnitude of CMC varies among individuals.
View Article and Find Full Text PDF