Purpose: To evaluate outcomes of patients who underwent primary arthroscopic repair for massive rotator cuff tears (MRCTs).
Methods: Patients with MRCTs (full-thickness tear of 2 or more tendons or full-thickness tear ≥5 cm) who underwent arthroscopic repair with a minimum follow-up of 2 years were retrospectively reviewed (n = 51). All patients had preoperative magnetic resonance imaging used to characterize pattern of tear, degree of fatty degeneration (Goutallier classification), and degree of rotator cuff arthropathy (Hamada classification).
Mesenchymal stem cells (MSCs) play a pivotal role in tissue engineering and regenerative medicine, with their clinical application often hindered by cell senescence during expansion. Recent studies suggest that MSC-deposited decellularized extracellular matrix (dECM) offers a conducive microenvironment that fosters cell proliferation and accentuates stem cell differentiation. However, the ability of this matrix environment to govern lineage differentiation of tissue-specific stem cells remains ambiguous.
View Article and Find Full Text PDFDespite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented.
View Article and Find Full Text PDFAdult mesenchymal stem cells (MSCs) are prone to senescence, which limits the scope of their use in tissue engineering and regeneration and increases the likelihood of post-implantation failure. As a robust alternative cell source, fetal stem cells can prevent an immune reaction and senescence. However, few studies use this cell type.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2022
(1) Background: Studies have yet to identify if there are any differences in musculoskeletal injury patterns between dance and gymnastics. This study aimed to determine if different injury patterns exist in adolescent females participating in those two popular sports. (2) Methods: A cross-sectional study was conducted using data collected from patients presenting to U.
View Article and Find Full Text PDFArticular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs.
View Article and Find Full Text PDFIn the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification.
View Article and Find Full Text PDFAlthough matrix microenvironment has the potential to improve expanded stem cell proliferation and differentiation capacity, decellularized extracellular matrix (dECM) deposited by senescent cells does not contribute to the rejuvenation of adult stem cells, which has become a barrier to personalized stem cell therapy. Genetic modification is an effective strategy to protect cells from senescence but it carries the increased risk of malignant transformation and genetic instability. In this study, lentivirus carrying either human telomerase reverse transcriptase (hTERT) or simian virus 40 large T antigen (SV40LT) was used to transduce human infrapatellar fat pad-derived stem cells (IPFSCs).
View Article and Find Full Text PDFAs an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development.
View Article and Find Full Text PDFBasement membrane proteins are known to guide cell structures, differentiation, and tissue repair. Although there is a wealth of knowledge on the functions of laminins, perlecan, and type IV collagen in maintaining tissue homeostasis, not much is known about nidogen. As a key molecule in the basement membrane, nidogen contributes to the formation of a delicate microenvironment that proves necessary for stem cell lineage-specific differentiation.
View Article and Find Full Text PDFDeemed as incurable, Alzheimer's disease (AD) research is becoming less convoluted as our understanding of its pathology increases. With current treatments focusing on merely mitigating the symptoms of AD, there have been many attempts to find a molecular culprit to serve as the single underlying cause and therapeutic target for clinical applications to approach the disease from its roots. Indeed, over the course of decades, the endless search for a singular target culprit in AD has uncovered a cascade of pathological defects, adding on to each other throughout the progression of the disease.
View Article and Find Full Text PDF