The development of the sodium metal anode is hampered by uncontrolled Na dendrite growth and unstable solid electrolyte interface (SEI). Herein, SbTe nanosheets are anchored into the fibers of carbon cloth (CC) to construct SbTe@CC material as Na metal host for sodium metal batteries (SMBs). The alloying product of NaSb with strong sodiophilicity serves as a nucleation seed to induce homogeneous Na deposition and boost the formation of a dendrite-free Na metal anode.
View Article and Find Full Text PDFStay-green syndrome (SGS) resistant germplasms serve as the cornerstone for soybean improvement. A comprehensive assessment was conducted on a panel of 1553 germplasms to evaluate their resistance to SGS through natural inoculation. Over a three-year period, one landrace, ZaoShuHeiDou, emerged as resilient to SGS, displaying a significantly reduced risk of SGS (p < 0.
View Article and Find Full Text PDFMicrobial dissimilated iron reduction is one of the important driving forces of the biological and geochemical cycles of iron in nature. Plant root exudates dominated by organic acids are important electron donors of the rhizosphere dissimilar iron reduction microorganisms under flooded conditions. In this paper, we investigated the effects of different kinds and concentrations of organic acids on the dissimilation reduction process of goethite by Shewanella oneidensis MR-1, and explored the effect of phase transformation of iron minerals on its adsorption of Cd.
View Article and Find Full Text PDFTraditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS).
View Article and Find Full Text PDFObjective: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.
Methods And Materials: All patients, including retrospective cohort (training cohort, n = 306; internal validation cohort, n = 77) and prospective external validation cohort (n = 82), were diagnosed as locoregional TNBC and underwent pre-intervention sonographic evaluation in this multi-center study. A thorough chart review was conducted for each patient to collect clinicopathological and sonographic features, and ultrasound radiomics features were obtained by PyRadiomics.
The traditional computer with von Neumann architecture has the characteristics of separate storage and computing units, which leads to sizeable time and energy consumption in the process of data transmission, which is also the famous "von Neumann storage wall" problem. Inspired by neural synapses, neuromorphic computing has emerged as a promising solution to address the von Neumann problem due to its excellent adaptive learning and parallel capabilities. Notably, in 2016, researchers integrated light into neuromorphic computing, which inspired the extensive exploration of optoelectronic and all-optical synaptic devices.
View Article and Find Full Text PDFNanofiber neuromorphic transistors are regarded as promising candidates for mimicking brain-like learning and advancing high-performance computing. Composite nanofibers (CNFs) typically exhibit enhanced optoelectronic and mechanical properties. In this study, indium-gallium-zinc oxide (IGZO)/polyvinylpyrrolidone (PVP) CNFs were synthesized, and the neuromorphic transistor was integrated on both rigid and flexible substrates.
View Article and Find Full Text PDFLong-read sequencing technologies have revolutionized genome assembly producing near-complete chromosome assemblies for numerous organisms, which are invaluable to research in many fields. However, regions with complex repetitive structure continue to represent a challenge for genome assembly algorithms, particularly in areas with high heterozygosity. Robust and comprehensive solutions for the assessment of assembly accuracy and completeness in these regions do not exist.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2024
Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2024
Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-β1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth.
View Article and Find Full Text PDFThe modeling of distracted driving behavior has been studied for many years, however, there remain many distraction phenomena that can not be fully modeled. This study proposes a new method that establishes the model using the queuing network model human processor (QN-MHP) framework. Unlike previous models that only consider distracted-driving-related human factors from a mathematical perspective, the proposed method reflects the information processing in the human brain, and simulates the distracted driver's cognitive processes based on a model structure supported by physiological and cognitive research evidence.
View Article and Find Full Text PDFHumans learn concepts both from labeled supervision and by unsupervised observation of patterns, a process machines are being taught to mimic by training on large annotated datasets-a method quite different from the human pathway, wherein few examples with no supervision suffice to induce an unfamiliar relational concept. We introduce a computational model designed to emulate human inductive reasoning on abstract reasoning tasks, such as those in IQ tests, using a minimax entropy approach. This method combines identifying the most effective constraints on data via minimum entropy with determining the best combination of them via maximum entropy.
View Article and Find Full Text PDFCurrent computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making.
View Article and Find Full Text PDFIt is highly attractive to develop a photoelectrochemical (PEC) sensing platform based on a non-noble-metal nano array architecture. In this paper, a PEC hydrogen peroxide (HO) biosensor based on Ni/WS/WC heterostructures was synthesized by a facile hydrothermal synthesis method and melamine carbonization process. The morphology, structural and composition and light absorption properties of the Ni/WS/WC catalyst were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer.
View Article and Find Full Text PDFWhite matter hyperintensities, one of the major markers of cerebral small vessel disease, disrupt the integrity of neuronal networks and ultimately contribute to cognitive dysfunction. However, a deeper understanding of how white matter hyperintensities related to the connectivity patterns of brain hubs at the neural network level could provide valuable insights into the relationship between white matter hyperintensities and cognitive dysfunction. A total of 36 patients with moderate to severe white matter hyperintensities (Fazekas score ≥ 3) and 34 healthy controls underwent comprehensive neuropsychological assessments and resting-state functional MRI scans.
View Article and Find Full Text PDFWe utilized a CO laser to carve long-period fiber gratings (LPFGs) on polarization-maintaining fibers (PMFs) along the fast and slow axes. Based on the spectra of LPFGs written along two different directions, we found that when LPFG was written along the fast axis, the spectrum had lower insertion loss and fewer side lobes. We investigated the temperature and twist characteristics of the embedded structure of the LPFG and Sagnac loop and ultimately obtained a temperature sensitivity of -0.
View Article and Find Full Text PDFThe value of a novel soybean male-sterile mutation in breeding practice was determined by its outcrossing properties. Then, the effects of different planting arrangements on the pod set characteristics of male-sterile plants were assessed by using orthogonal experiments at two sites. At the same time, the effects of male sterility on other traits were assessed in two CF populations.
View Article and Find Full Text PDFMany problems of potassium-ion batteries (PIBs) are hidden under a low mass load of the active material. However, developing research based on areal capacity is challenging for PIBs, due to the lack of an anode capable of delivering a stable capacity of more than 1 mAh cm. This work investigates the K storage behavior of highly graphitized carbon fibers (HG-CF), which exhibit automatic structural adjustments to mitigate voltage polarization.
View Article and Find Full Text PDFOptical fiber Fabry-Pérot (FP) interferometer sensors have long been the focus of researchers in sensing applications because of their simple light path, low cost, compact size and convenient manufacturing methods. A miniature and highly sensitive optic fiber temperature sensor using an ultraviolet glue-filled FP cavity in a hollow capillary fiber is proposed. The sensor is fabricated by fusion splicing a single-mode fiber with a hollow capillary fiber, which is filled with ultraviolet glue to form a FP cavity.
View Article and Find Full Text PDFBackground: Cognitive impairment is the most common clinical manifestation of ischemic leukoaraiosis (ILA), but the underlying neurobiological pathways have not been well elucidated. Recently, it was thought that ILA is a "disconnection syndrome". Disorganized brain connectome were considered the key neuropathology underlying cognitive deficits in ILA patients.
View Article and Find Full Text PDFTraditional neural networks used gradient descent methods to train the network structure, which cannot handle complex optimization problems. We proposed an improved grey wolf optimizer (SGWO) to explore a better network structure. GWO was improved by using circle population initialization, information interaction mechanism and adaptive position update to enhance the search performance of the algorithm.
View Article and Find Full Text PDFCis-regulatory elements (CREs) can be classified by the shapes of their transcription start site (TSS) profiles, which are indicative of distinct regulatory mechanisms. Massively parallel reporter assays (MPRAs) are increasingly being used to study CRE regulatory mechanisms, yet the degree to which MPRAs replicate individual endogenous TSS profiles has not been determined. Here, we present a new low-input MPRA protocol (TSS-MPRA) that enables measuring TSS profiles of episomal reporters as well as after lentiviral reporter chromatinization.
View Article and Find Full Text PDFThe cone photoreceptors in our eyes selectively transduce the natural light into spiking representations, which endows the brain with high energy-efficiency color vision. However, the cone-like device with color-selectivity and spike-encoding capability remains challenging. Here, we propose a metal oxide-based vertically integrated spiking cone photoreceptor array, which can directly transduce persistent lights into spike trains at a certain rate according to the input wavelengths.
View Article and Find Full Text PDFObjective: To explore the clinical application of acellular allogenic dermis combined with VSD in repairing abdominal wall defect combined with abdominal infection.
Methods: Clinical data of 5 cases of abdominal cavity infection with abdominal wall defect admitted in the Burn Department of Quanzhou First Hospital from January 2019 to January 2022 were collected for this study. The abdominal cavity was closed temporarily after debridement and VSD in the early stage, and the abdominal wall defect was repaired by acellular allogeneic dermis combined with autologous split-thickness skin graft in the second stage.