Selective and efficient removal of thiosulfates (SO) to recover high-purity and value-added thiocyanate products by fractional crystallization process is a promising route for the resource treatment of coke oven gas desulfurization wastewater. Herein, catalytic wet air oxidation (CWAO), with manganese-based oxide synthesized from spent ternary lithium-ion batteries (MnO-LIBs), was proposed to selectively remove SO from desulfurization wastewater. 98.
View Article and Find Full Text PDFUbiquitous macromolecular natural organic matter (NOM) in wastewater seriously influences the removal of emerging small-molecule contaminants via heterogeneous advanced oxidation processes because this material covers active sites and quenches reactive oxygen species. Here, sponge-like magnetic manganese ferrite (MnFeO-S) with a three-dimensional hierarchical porous structure was prepared via a facile solvent-free molten method. Compared with the particle-like structure of MnFeO-P, the sponge-like structure of MnFeO-S presents an enlarged specific surface area (112.
View Article and Find Full Text PDFIn this work, solar drying technology was applied for the deep dewatering of coal slime to save thermal energy and reduce the dust produced during the hot drying process of coal slime. Solar drying technology is used to dry coal slime to realize its resource utilization. The influence of solar radiation intensity and slime thickness is investigated on the drying process.
View Article and Find Full Text PDFA selective separation-recovery process based on tuning organic acid was proposed to the resource recycling of spent lithium-ion batteries (LIBs) for the first time. The low-cost preparation of CoFeO, reuse of waste acid and recovery of Li can be realized in this process, simultaneously. Li and Co in spent LIBs can be leached efficiently using citric acid as a leaching agent, and separated effectively from leaching solution by tuning oxalic acid content.
View Article and Find Full Text PDF