Proc Natl Acad Sci U S A
August 2024
The conversion of CO into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO and water into methanol and oxygen.
View Article and Find Full Text PDFIn coal mining areas, surface subsidence poses significant risks to human life and property. Fortunately, surface subsidence caused by coal mining can be monitored and predicted by using various methods, e.g.
View Article and Find Full Text PDFEarly prognostic assessment of patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is important for guiding clinical management and reducing mortality. The aim of this study was to dynamically monitor the clinical characteristics of HBV-ACLF patients, thereby allowing the construction of a novel prognostic scoring model to predict the outcome of HBV-ACLF patients. Clinical data was prospectively collected for 518 patients with HBV-ACLF and randomly divided into training and validation sets.
View Article and Find Full Text PDFPhotoelectrochemical water splitting is a promising technique for converting solar energy into low-cost and eco-friendly H fuel. However, the production rate of H is limited by the insufficient number of photogenerated charge carriers in the conventional photoelectrodes under 1 sun (100 mW cm) light. Concentrated solar light irradiation can overcome the issue of low yield, but it leads to a new challenge of stability because the accelerated reaction alters the surface chemical composition of photoelectrodes.
View Article and Find Full Text PDFConverting relatively inert methane into active chemical fuels such as methanol with high selectivity through an energy-saving strategy has remained a grand challenge. Photocatalytic technology consuming solar energy is an appealing alternative for methane reforming. However, the low efficiency and the undesirable formation of low-value products, such as carbon dioxide and ethane, limit the commercial application of photocatalytic technology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Interface engineering in heterostructures at the atomic scale has been a central research focus of nanoscale and quantum material science. Despite its paramount importance, the achievement of atomically ordered heterointerfaces has been severely limited by the strong diffusive feature of interfacial atoms in heterostructures. In this work, we first report a strong dependence of interfacial diffusion on the surface polarity.
View Article and Find Full Text PDFSolar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations.
View Article and Find Full Text PDF, as a potential accumulator of fucoxanthin, has become a valuable material to develop functional foods for humans. Our previous research revealed that green light effectively promotes the accumulation of fucoxanthin in , but there is little research on chromatin accessibility in the process of transcriptional regulation. This study was conducted to reveal the mechanism of fucoxanthin biosynthesis in under green light by analyzing promoter accessibility and gene expression profiles.
View Article and Find Full Text PDFHigh efficiency micro-LEDs, with lateral dimensions as small as one micrometer, are desired for next-generation displays, virtual/augmented reality, and ultrahigh-speed optical interconnects. The efficiency of quantum well LEDs, however, is reduced to negligibly small values when scaled to such small dimensions. Here, we show such a fundamental challenge can be overcome by developing nanowire excitonic LEDs.
View Article and Find Full Text PDFSeawater electrolysis provides a viable method to produce clean hydrogen fuel. To date, however, the realization of high performance photocathodes for seawater hydrogen evolution reaction has remained challenging. Here, we introduce n-p Si photocathodes with dramatically improved activity and stability for hydrogen evolution reaction in seawater, modified by Pt nanoclusters anchored on GaN nanowires.
View Article and Find Full Text PDFProduction of hydrogen fuel from sunlight and water, two of the most abundant natural resources on Earth, offers one of the most promising pathways for carbon neutrality. Some solar hydrogen production approaches, for example, photoelectrochemical water splitting, often require corrosive electrolyte, limiting their performance stability and environmental sustainability. Alternatively, clean hydrogen can be produced directly from sunlight and water by photocatalytic water splitting.
View Article and Find Full Text PDFHuman activities have increased the possibility of simultaneous warming and drought, which will lead to different carbon (C) allocation and water use strategies in plants. However, there is no conclusive information from previous studies. To explore C and water balance strategies of plants in response to warming and drought, we designed a 4-year experiment that included control (CT), warming (W, with a 5°C increase in temperature), drought (D, with a 50% decrease in precipitation), and warming and drought conditions (WD) to investigate the non-structural carbohydrate (NSC), C and nitrogen (N) stoichiometry, and intrinsic water use efficiency (iWUE) of leaves, roots, and litter of , a major tree species in southern China.
View Article and Find Full Text PDFMicro or submicron scale light-emitting diodes (µLEDs) have been extensively studied recently as the next-generation display technology. It is desired that µLEDs exhibit high stability and efficiency, submicron pixel size, and potential monolithic integration with Si-based complementary metal-oxide-semiconductor (CMOS) electronics. Achieving such µLEDs, however, has remained a daunting challenge.
View Article and Find Full Text PDFClean and renewable photocatalytic technology for methane reforming into high-value liquid fuels, such as methanol, is a promising strategy for commercial industrial applications. However, poor charge separation, sluggish methane activation, and excessive oxidation collectively inhibit the production of methanol from photocatalytic methane reforming. Herein, we have developed enhanced metal-support interactions between a GaN nanowire photocatalyst and a Cu nanoparticle (CuNP) cocatalyst via p-doping in GaN.
View Article and Find Full Text PDFTuning the surface structure of the photoelectrode provides one of the most effective ways to address the critical challenges in artificial photosynthesis, such as efficiency, stability, and product selectivity, for which gallium nitride (GaN) nanowires have shown great promise. In the GaN wurtzite crystal structure, polar, semipolar, and nonpolar planes coexist and exhibit very different structural, electronic, and chemical properties. Here, through a comprehensive study of the photoelectrochemical performance of GaN photocathodes in the form of films and nanowires with controlled surface polarities we show that significant photoelectrochemical activity can be observed when the nonpolar surfaces are exposed in the electrolyte, whereas little or no activity is measured from the GaN polar -plane surfaces.
View Article and Find Full Text PDFIncreased expression of TK1 is associated with the progression of a variety of tumors. However, the relationship of TK1 expression with immune cell infiltration and its prognostic value in hepatocellular carcinoma (HCC) are still unknown. In this study the TCGA database was used to evaluate TK1 expression and its impact on survival in patients with HCC.
View Article and Find Full Text PDFInfluenza virus infections pose a continuous threat to human health. Although vaccines function as a preventive and protective tool, they may not be effective due to antigen drift or an inaccurate prediction of epidemic strains. Monoclonal antibodies (mAbs) have attracted wide attention as a promising therapeutic method for influenza virus infections.
View Article and Find Full Text PDFBackground: The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV.
Methods: In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV.
H9N2 avian influenza viruses (AIVs) can cause respiratory symptoms and decrease the egg production. Additionally, H9N2 AIVs can provide internal genes for reassortment with other subtypes. During the monitoring of live poultry markets in 2016, a total of 32 (32/179, 17.
View Article and Find Full Text PDFObjectives: The continuous evolution of highly pathogenic H5N6 avian influenza viruses (AIVs) causes outbreaks in wildfowl and poultry, and occasional human infections. The aim of this study was to better understand the genetic relationships between these H5N6 AIVs from eastern China and other AIVs.
Methods: In 2016, 1623 cloacal swabs were sampled from poultry in 18 LPMs in eastern China, and subsequently characterized systematically using gene sequencing, phylogenetic studies, and antigenic analysis.
Hybrid materials consisting of semiconductors and cocatalysts have been widely used for photoelectrochemical (PEC) conversion of CO gas to value-added chemicals such as formic acid (HCOOH). To date, however, the rational design of catalytic architecture enabling the reduction of CO gas to chemical has remained a grand challenge. Here, we report a unique photocathode consisting of CuS-decorated GaN nanowires (NWs) integrated on planar silicon (Si) for the conversion of HS-containing CO mixture gas to HCOOH.
View Article and Find Full Text PDFAvian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold-based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.
View Article and Find Full Text PDFThe H2 subtypes of avian influenza A viruses (avian IAVs) have been circulating in poultry, and they have the potential to infect humans. Therefore, establishing a method to quickly detect this subtype is pivotal. We developed a TaqMan minor groove binder real-time RT-PCR assay that involved probes and primers based on conserved sequences of the matrix and hemagglutinin genes.
View Article and Find Full Text PDF