Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) are nanoscale materials with unique mechanical properties and geometry that attract considerable interest in recent years for a wide range of applications. This review pays special attention to the recent progress of CNFs and CNCs assisted 3D printing in medicine, food, engineering, and architecture fields. Various types of CNFs and CNCs used for 3D printing are summarized.
View Article and Find Full Text PDFBackground: Osteoporosis is a prevalent metabolic bone disease. Osteoporotic fractures can lead to severe functional impairment and increased mortality. Long noncoding RNA H19 has emerged as a pivotal player in bone remodeling, serving both as a biomarker and a regulator.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Forest transformation can markedly impact soil greenhouse gas emissions and soil environmental factors. Due to increasing labor costs and declining bamboo prices, the abandonment of Moso bamboo forests is sharply escalating in recent years, which weakens the carbon sequestration capacity and decreases the ecological function of forests. To improve the ecological quality of abandoned Moso bamboo forests, transformations of abandoned bamboo forests have occurred.
View Article and Find Full Text PDFCellulose nanocrystals have been obtained from maple leaves for stabilizing Pickering emulsions, but a chemical modification is required to improve hydrophobicity and the yield is relatively low due to the removal of non-cellulose components. Herein, lignin was retained while isolating cellulose from maple leaves, and the prepared lignin-containing cellulose nanocrystals (LCNCs) were applied as natural Pickering emulsion stabilizers. Rod-like shaped LCNCs with tunable lignin contents had suitable hydrophobicity and high aspect ratios, resulting in long-term stability of LCNC-stabilized Pickering emulsions.
View Article and Find Full Text PDFThis project utilized both field experiment and laboratory analyses to address the gap in understanding regarding the alterations in properties and functions of biochar, and the impact of heavy metal passivation in soil over long-term natural field aging. The study aimed to examine the changes in the physical and chemical characteristics of biochar over an extended period of natural aging. Additionally, it sought to analyze the impact and mechanisms of biochar in reducing of the harmful effects of the heavy metal cadmium (Cd) during the aging process.
View Article and Find Full Text PDFDark aqueous-phase reactions involving the nitrosation and nitration of aromatic organic compounds play a significant role in the production of light-absorbing organic carbon in the atmosphere. This process constitutes a crucial aspect of tropospheric chemistry and has attracted growing research interest, particularly in understanding the mechanisms governing nighttime reactions between phenols and nitrogen oxides. In this study, we present new findings concerning the rapid dark reactions between phenols containing electron-donating groups and inorganic nitrite in acidic aqueous solutions with pH levels <3.
View Article and Find Full Text PDFThe current study investigated valorization of lignin nanoparticles (LNPs) and phenolic compounds loaded in chitosan (DLECNPs) extracted from date palm leaves into the soy protein isolate (SPI) biocomposite films. The mechanical, structural, barrier, physiochemical, thermal, optical, antioxidant, and antimicrobial properties of the formulated composite films were investigated. The findings showed that the incorporation of DLECNPs into the SPI films significantly improved the film's antioxidant properties by more than 3 times and showed antibacterial inhibition zone in the range of 10-15 mm against six pathogenic bacteria.
View Article and Find Full Text PDFCyanobacterial blooms, resulting from serious eutrophication, can produce various cyanotoxins and severely disrupt aquatic ecosystems. Inducible defenses are adaptive traits developed by prey in response to predation risks. However, the effects of the increasing proportion of cyanobacteria and cyanotoxins produced during cyanobacterial blooms on the inducible defenses of cladocerans, particularly in terms of behavioral defenses, remain unclear.
View Article and Find Full Text PDFVascular dementia (VD), a progressive vascular cognitive impairment, is characterised by the presence of cerebral hypoperfusion, increased blood-brain barrier permeability, and white matter lesions. Although current treatment strategies primarily focus on risk factors such as hypertension, diabetes, and heart disease, efficient and targeted therapies are lacking and the underlying mechanisms of VD remain unclear. We previously discovered that Apelin receptors (APJ), which are G protein-coupled receptors (GPCRs), can homodimerize and generate signals that are distinct from those of APJ monomers in VD rats.
View Article and Find Full Text PDFLong-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO), CO, SO, and ozone (O) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects.
View Article and Find Full Text PDFFreeze desalination is an appealing method for seawater desalination through freezing seawater. The percentage of ions in the liquid phase, which is termed ion rejection rate, is a critical factor affecting the performance of freeze desalination. Improving the ion rejection rate is an important topic for freeze desalination.
View Article and Find Full Text PDFMost fine ambient particulate matter (PM)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM toxicity, the association between PM mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints.
View Article and Find Full Text PDFp53 deficiency plays a crucial role in chemotherapy resistance through various biological events, including posttranslational modifications (PTMs). Recently, lysine crotonylation (Kcr) has been shown to play a vital role in cancer progression. However, the global p53-regulated crotonylome and the function of these altered Kcr proteins after p53 deficiency remain unclear.
View Article and Find Full Text PDFForests are a major source of wealth for Canadians, and cellulose makes up the "skeleton" of wood fibers. Concentrated HSO and NaOH/urea aqueous solutions are two efficient solvents that can rapidly dissolve cellulose. Our preliminary experiment obtained regenerated wood cellulose films with different mechanical properties from these two solvents.
View Article and Find Full Text PDFAmbient fine particulate matter (PM) is associated with numerous health complications, yet the specific PM chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM. Redox-active metals (i.
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
The polyurethane (PU) foams can be functionally tailored by modifying the formulation with different additives. One such additive is melamine (MA) formaldehyde resin for improving their flame-retardant properties. In this work, the glycerol-modified (GMF), sodium alginate (SGMF)- and lignosulfonate-modified melamine formaldehyde (LGMF) were prepared and used as flame retardants reacting with isocyanate to prepare the corresponding rigid polyurethane foams (GMF-PU, SGMF-PU and LGMF-PU).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2024
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers.
View Article and Find Full Text PDFBackground: Low-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli.
View Article and Find Full Text PDFObjective: Vericiguat is a new medication to demonstrate clinical efficacy in heart failure with reduced ejection fraction (HFrEF) after worsening heart failure (WHF) events, but its cost-utility was unknown. We aimed to assess the cost-utility of combining the application of vericiguat with standard treatment in HFrEF patients who had WHF events.
Methods: A multistate Markov model was implemented to mimic the economic results of HFrEF patients who had WHF events in China after receiving vericiguat or placebo.
The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide.
View Article and Find Full Text PDFIonizable lipid-containing lipid nanoparticles (LNPs) are regarded as promising nonviral vectors for gene therapy delivery systems. Rationale design of the ionizable lipid structure based on initial screening of ionizable lipid molecule libraries combined with systematic comparison and analysis on the physical chemical parameters related to delivery efficiency greatly accelerated the discovery of novel LNP candidates for delivering various nucleic acid therapeutics like mRNAs (mRNAs). Based on the copper-catalyzed azide-alkyne click reaction, which is highly efficient and biocompatible, we were able to obtain the lipid molecule library containing a common triazole moiety between different lipid tails and various substituents as hydrophilic head groups.
View Article and Find Full Text PDF