Auditory spatial attention detection (ASAD) aims to decipher the spatial locus of a listener's selective auditory attention from electroencephalogram (EEG) signals. However, current models may exhibit deficiencies in EEG feature extraction, leading to overfitting on small datasets or a decline in EEG discriminability. Furthermore, they often neglect topological relationships between EEG channels and, consequently, brain connectivities.
View Article and Find Full Text PDFAuditory spatial attention detection (ASAD) seeks to determine which speaker in a surround sound field a listener is focusing on based on the one's brain biosignals. Although existing studies have achieved ASAD from a single-trial electroencephalogram (EEG), the huge inter-subject variability makes them generally perform poorly in cross-subject scenarios. Besides, most ASAD methods do not take full advantage of topological relationships between EEG channels, which are crucial for high-quality ASAD.
View Article and Find Full Text PDF. The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the overfitting and low generalization of the model.
View Article and Find Full Text PDFMusic-oriented auditory attention detection (AAD) aims at determining which instrument in polyphonic music a listener is paying attention to by analyzing the listener's electroencephalogram (EEG). However, the existing linear models cannot effectively mimic the nonlinearity of the human brain, resulting in limited performance. Thus, a nonlinear music-oriented AAD model is proposed in this paper.
View Article and Find Full Text PDF