As a novel protein knockdown tool, proteolysis targeting chimeras (PROTACs) can induce potent degradation of target proteins by hijacking E3 ubiquitin ligases. However, the uncontrollable protein disruption of PROTACs is prone to cause "off-target" toxicity after systemic administration. Herein, we designed a photocaged-PROTAC (phoBET1) and loaded it in UCNPs-based mesoporous silica nanoparticles (UMSNs) to construct a NIR light-activatable PROTAC nanocage (UMSNs@phoBET1) for controllable target protein degradation.
View Article and Find Full Text PDFThe two proteases, PL and M, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PL and M of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme.
View Article and Find Full Text PDFMany chemotherapeutic drugs and photosensitizers suffer from poor solubility, unspecific delivery and uncontrollable release, which severely impede their biomedical applications. Herein, we designed a type of ROS-cleavable hydrophilic diselenide nanoparticles through self-assembling of PEG-modified camptothecin (CPT, a hydrophobic drug) and meso‑tetra (4-carboxyphenyl) porphine (TCPP, a hydrophobic photosensitizer). The TCPP@SeSe-CPT nanomedicine (particle size: 116.
View Article and Find Full Text PDFObjectives: A specific and sensitive automated chemiluminescent immunoassay (CLIA) was developed to detect neutralizing antibody (NAb) levels. This assay can be used for the diagnosis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, treatment and vaccine evaluation.
Methods: The SARS-CoV-2 receptor-binding domain (RBD) and a stabilized version of the spike ectodomain as antigens were detected by CLIA.
Cytosolic DNA activates cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling, which triggers interferon and inflammatory responses that help defend against microbial infection and cancer. However, aberrant cytosolic self-DNA in Aicardi-Goutière's syndrome and constituently active gain-of-function mutations in STING in STING-associated vasculopathy with onset in infancy (SAVI) patients lead to excessive type I interferons and proinflammatory cytokines, which cause difficult-to-treat and sometimes fatal autoimmune disease. Here, in silico docking identified a potent STING antagonist SN-011 that binds with higher affinity to the cyclic dinucleotide (CDN)-binding pocket of STING than endogenous 2'3'-cGAMP.
View Article and Find Full Text PDFInfluenza A viruses (IAV) have been a major public health threat worldwide, and options for antiviral therapy become increasingly limited with the emergence of drug-resisting virus strains. New and effective anti-IAV drugs, especially for highly pathogenic influenza, with different modes of action, are urgently needed. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs.
View Article and Find Full Text PDFCurrently, influenza PA endonuclease has become an attractive target for development of new drugs to treat influenza infections. Herein we report the discovery of new PA endonuclease inhibitors derived from a chelating agent dopamine moiety. A series of dopamine amide derivatives and their conformationally constrained 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based analogs were elaborated and assayed against influenza virus A/WSN/33 (H1N1).
View Article and Find Full Text PDFCurrently, it is in urgent need to develop novel selective PDE4 inhibitors with novel structural scaffolds to overcome the adverse effects and improve the efficacy. Novel 1-phenyl-3,4-dihydroisoquinoline amide derivatives were developed as potential PDE4 inhibitors based on the structure-based drug design and fragment identification strategy. A SARs analysis was performed in substituents attached in the C-3 side chain phenyl ring, indicating that the attachment of methoxy group or halogen atom substitution at the ortho-position of the phenyl ring was helpful to enhance both inhibitory activity toward PDE4B and selectivity.
View Article and Find Full Text PDFThe glycoprotein hemagglutinin of influenza virus plays a key role in the initial stage of virus infection, making it a potential target for novel influenza viruses entry inhibitors. Two "privileged fragments", 2-(piperidin-1-yl)ethan-1-amine and 2-(1,3-oxazinan-3-yl)ethan-1-amine were integrated into 3-O-β-chacotriosyl ursolic acid producing new derivatives 5 and 6 with improved activity against IAVs in vitro. Mechanistically, compound 6 was effective in inhibiting infection of H1-, H3-, and H5-typed influenza A viruses by interfering with the viral hemagglutinin.
View Article and Find Full Text PDFCurrently, entry inhibitors contribute immensely in developing a new generation of anti-influenza virus drugs. Our earlier studies have identified that 3-O-β-chacotriosyl ursolic acid (1) could inhibit H5N1 pseudovirus by targeting hemagglutinin (HA). In the present study, a series of C-28 modified pentacyclic triterpene saponins via conjugation with a series of amide derivatives were synthesized and their antiviral activities against influenza A/Duck/Guangdong/99 virus (H5N1) in MDCK cells were evaluated.
View Article and Find Full Text PDFTetrahydroquinoline and tetrahydroisoquinoline derivatives containing 2-phenyl-5-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds showed good inhibitory activity against PDE4B and blockade of LPS (lipopolysaccharide) induced TNF-α release, which also exhibited considerable in vivo activity in animal models of asthma/COPD (chronic obstructive pulmonary disease) and sepsis induced by LPS. The bioactivity of compounds containing tetrahydroquinoline (series 4) was higher than that of tetrahydroisoquinoline derivatives (series 3).
View Article and Find Full Text PDFMultidrug resistance (MDR) is a tendency in which cells become resistant to structurally and mechanistically unrelated drugs, which is mediated by P-glycoprotein (P-gp). It is one of the noteworthy problems in cancer therapy. As one of the most important drugs in cancer therapy, doxorubicin has not good effectiveness if used independently.
View Article and Find Full Text PDFThis paper describes our medicinal chemistry efforts on 7-(cyclopentyloxy)-6-methoxy1,2,3,4-tetrahydroisoquinoline scaffold: design, synthesis and biological evaluation using conformational restriction approach and bioisosteric replacement strategy. Biological data revealed that the majority of the synthesized compounds of this series displayed moderate to potent inhibitory activity against PDE4B and strong inhibition of LPS-induced TNFα release. Among them, compound 19 exhibited the strongest inhibition against PDE4B with an IC of 0.
View Article and Find Full Text PDFOligosaccharides have been used for an environmentally friendly insect control in the agricultural industry. In order to discover novel eco-friendly pesticides, a series of partially acetylated oligorhamnoses mezzettiasides, -, and their analogues, -, with biosurfactant characteristics were designed and synthesized, some of which exhibited comparable to or even stronger aphicidal activity than pymetrozine. Preliminary SAR studies demonstrated that the aphicidal activity of mezzettiasides analogs is highly dependent on their structures, including both the sugar length and the substitutes on the sugar.
View Article and Find Full Text PDFImprovement of subtype selectivity of an inhibitor's binding activity using the conformational restriction approach has become an effective strategy in drug discovery. In this study, we applied this approach to PDE4 inhibitors and designed a series of novel oxazolidinone-fused 1,2,3,4-tetrahydroisoquinoline derivatives as conformationally restricted analogues of rolipram. The bioassay results demonstrated the oxazolidinone-fused tetrahydroisoquinoline derivatives exhibited moderate to good inhibitory activity against PDE4B and high selectivity for PDE4B/PDE4D.
View Article and Find Full Text PDFHighly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays.
View Article and Find Full Text PDFTwo partially acylated oligorhamnoside derivatives 1 and 2 structurally related to the natural product mezzettiaside-6 were synthesized via a '2 + 1 + 1' convergent strategy. The bioassay results showed that the introduction of the acetyl groups to the 2-position of the terminal l-rhamnose was helpful to improve in vitro cytotoxicity. Compound 1 showed both extensive in vitro cytotoxicity in tumor cell lines and potential antimultidrug resistance capability.
View Article and Find Full Text PDF