Publications by authors named "Yiwen Ren"

Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.

View Article and Find Full Text PDF

X-ray scintillators have gained significant attention in medical diagnostics and industrial applications. Despite their widespread utility, scintillator development faces a significant hurdle when exposed to elevated temperatures, as it usually results in reduced scintillation efficiency and diminished luminescence output. Here we report a molecular design strategy based on a hybrid perovskite (TpyBiCl) that overcomes thermal quenching through multi-excited state switching.

View Article and Find Full Text PDF

In this work, we investigate multistep ferroelectric polarization switching dynamics of a series of poly(vinylidene fluoride-trifluoroethylene)/polystyrene, P(VDF-TrFE)/PS, as active layers in ferroelectric capacitors with variable P(VDF-TrFE)/PS thickness ratios and a wide range of driving voltage frequencies (1-1000 Hz). The PS electret-like modulation effects on the depolarized field fluctuation are proven to be responsible for this multistep ferroelectric polarization switching process. To be specific, the switching current density peak splits into two peaks in both positive and negative voltage ranges according to the stimulus-response (S-R) data from the metal-ferroelectric-electret-metal capacitor driven by a periodic triangular voltage wave.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are current threats to available antibiotic therapies, and this has renewed interest in the therapeutic use of phage as an alternative. However, development of phage resistance has led to unsuccessful therapeutic outcomes. In the current study, we applied phage training to minimize bacterial phage resistance and to improve treatment outcome by adapting the phage to their target hosts during co-evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a bilayer 2D molecular crystal (2DMC) heterojunction to enhance bidirectional synaptic behaviors in optoelectronic devices used for neuromorphic vision systems.
  • The device demonstrates ambipolar properties and high responsivity to weak light, successfully enabling excitatory and inhibitory synaptic behaviors through varying gate voltages.
  • Additionally, this technology shows promising applications in motion detection, achieving over 90% accuracy in recognizing vehicles, which could advance intelligent bionic devices and future artificial vision systems.
View Article and Find Full Text PDF

The application of carbides in catalysis, batteries, aerospace fields, etc. has been continuously expanded and deepened, which is attributed to the diversified physicochemical properties of carbides via a tune-up of their morphology, composition, and microstructure. The emergence of MAX phases and high entropy carbides with unparalleled application potential undoubtedly further stimulates the research upsurge of carbides.

View Article and Find Full Text PDF

Intrauterine adhesion (IUA) is one of the principal causes of secondary infertility in women of reproductive age, which seriously affects female reproductive function and quality of life. In recent years, the incidence of IUA has been increasing year by year, but its pathological mechanism has not yet been clarified. This study intended to reveal the pathogenesis of IUA and find new therapeutic targets by analyzing the proteomic differences between intrauterine adhesion tissues and normal human endometrial tissues.

View Article and Find Full Text PDF

MXene-based functional textiles have been widely studied and applied in many fields. However, the service stability of MXene combined with textile substrates in the environment is far from ideal, which makes its practical application a great challenge. Here we introduced gallic acid (GA), as natural reactive polyphenol compound to silk fibers through enzymatic polymerization, which significantly improved the durability of its conductivity.

View Article and Find Full Text PDF

Anomalous negative phototransistors in which the channel current decreases under light illumination hold potential to generate novel and multifunctional optoelectronic applications. Although a variety of design strategies have been developed to construct such devices, NPTs still suffer from far lower device performance compared to well-developed positive phototransistors (PPTs). In this work, a novel 1D/2D molecular crystal p-n heterojunction, in which p-type 1D molecular crystal (1DMC) arrays are embedded into n-type 2D molecular crystals (2DMCs), is developed to produce ultrasensitive NPTs.

View Article and Find Full Text PDF

Curtains with light-to-heat conversion capacity can warm up a room under solar radiation and improve the thermal energy efficiency of buildings, thereby reducing energy consumption during winter. Herein, a photothermal silk fibroin aerogel is synthesized by freeze-drying and curing method, using silk fibroin (SF) as template and scaffold, copper sulfide nanoparticles (CuS NPs) as photothermal conversion material, polyethylene glycol (PEG) as plasticizer, and polydimethylsiloxane (PDMS) as the package agent. The results reveal that SF as the template may guide the growth of CuS NPs, and the introduction of PEG improves the flexibility of the prepared CuS@SF aerogel.

View Article and Find Full Text PDF