Using oxygen reduction for the photocatalytic production of hydrogen peroxide (HO) has been considered a green and sustainable route. In the present study, to achieve high efficiency, graphitic carbon nitride (g-CN) was obtained using thermal polymerization from a bi-component precursor and was then assembled with cellulose nanofibers. It was found that a small quantity of cellulose nanofibers that generates carbon fibers upon pyrolysis greatly improves the photocatalytic activity compared with that of g-CN alone.
View Article and Find Full Text PDFUltrafine C-doped ZnO/carbon nanocomposites with different photocatalytic activities have been prepared using TEMPO-oxidized cellulose as a template but also as the source of carbon. The result is an enhancement of the photocatalytic activity ascribed to different phenomena: a high mesoporosity beneficial to mass transport, a thin carbon layer onto ZnO increasing the charge transfer and hydrophobicity of ZnO, a narrowing of ZnO band gap and an increase of the zinc (V) and oxygen (V) vacancies effectively suppressing of the charge recombination. These are evidenced by photocatalytic test of photodegradation of methyl orange (MO) achieved to assess and compared the different photocatalysts.
View Article and Find Full Text PDFThe spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.
View Article and Find Full Text PDFUnlabelled: The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular membranes. The location and properties of the FPs in the spike (S) glycoproteins of different coronaviruses (CoV) have not yet been determined. Through amino acid sequence analysis of S proteins of representative CoVs, we identified a common region as a possible FP (pFP) that shares the characteristics of FPs of class I viral fusion proteins, including high Ala/Gly content, intermediate hydrophobicity, and few charged residues.
View Article and Find Full Text PDF