Publications by authors named "Yiwei Qiang"

Polymer-nanoparticle composite films (PNCFs) with high loadings of nanoparticles (NPs) (>50 vol %) have applications in multiple areas, and an understanding of their mechanical properties is essential for their broader use. The high-volume fraction and small size of the NPs lead to physical confinement of the polymers that can drastically change the properties of polymers relative to the bulk. We investigate the fracture behavior of a class of highly loaded PNCFs prepared by polymer infiltration into NP packings.

View Article and Find Full Text PDF

Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores.

View Article and Find Full Text PDF

Alignment of highly anisotropic nanomaterials in a polymer matrix can yield nanocomposites with unique mechanical and transport properties. Conventional methods of nanocomposite film fabrication are not well-suited for manufacturing composites with very high concentrations of anisotropic nanomaterials, potentially limiting the widespread implementation of these useful structures. In this work, we present a scalable approach to fabricate polymer-infiltrated nanoplatelet films (PINFs) based on flow coating and capillary rise infiltration (CaRI) and study the processing-structure-property relationship of these PINFs.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme nanoconfinement significantly enhances the thermal stability and reduces the flammability of polystyrene (PS) by infiltrating it into silica nanoparticle films.
  • As the size of the silica nanoparticles decreases, the thermal degradation time of PS increases up to 30 times at 543 K, with a notable rise in activation energy for degradation.
  • The degradation process is mostly limited by diffusion, occurring from the film surface inward and resulting in less char formation, while the overall dynamics of the nanoparticles remain similar to bulk materials.
View Article and Find Full Text PDF

A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.

View Article and Find Full Text PDF