Publications by authors named "Yitzhak Yahalom"

Population dynamics reflects an underlying birth-death process, where the rates associated with different events may depend on external environmental conditions and on the population density. A whole family of simple and popular deterministic models (such as logistic growth) supports a transcritical bifurcation point between an extinction phase and an active phase. Here we provide a comprehensive analysis of the phases of that system, taking into account both the endogenous demographic noise (random birth and death events) and the effect of environmental stochasticity that causes variations in birth and death rates.

View Article and Find Full Text PDF

Extinction is the ultimate absorbing state of any stochastic birth-death process; hence, the time to extinction is an important characteristic of any natural population. Here we consider logistic and logisticlike systems under the combined effect of demographic and bounded environmental stochasticity. Three phases are identified: an inactive phase where the mean time to extinction T increases logarithmically with the initial population size, an active phase where T grows exponentially with the carrying capacity N, and a temporal Griffiths phase, with a power-law relationship between T and N.

View Article and Find Full Text PDF