Publications by authors named "Yitz Goldstein"

Background: The SARS-CoV-2 pandemic saw the rapid rise, global spread, and diversification of the omicron variant in 2022. Given the overwhelming dominance of this variant globally and its diverse lineages, there is an urgent need to ensure that diagnostic assays are capable of detecting widely circulating omicron sub-lineages.

Study Design: Remnant clinical VTM samples from SARS-CoV-2 PCR confirmed infections (n = 733) collected in Wisconsin (n = 94), New York (n = 267), and South Carolina (n = 372) throughout 2022 were sequenced, classified, and tested with m2000 RealTime SARS-CoV-2, Alinity m SARS-CoV-2, ID NOW COVID-19 v2.

View Article and Find Full Text PDF
Article Synopsis
  • The Abbott Global Surveillance program is monitoring the ability of various diagnostic tests to detect different circulating variants of SARS-CoV-2, including major variants of concern like alpha, beta, gamma, and delta.
  • A study was conducted using live virus cultures and clinical samples, testing numerous Abbott assays for their effectiveness in identifying these variants.
  • Results showed that all molecular assays successfully detected 100% of variant patient specimens, while antigen tests also performed well, confirming the reliability of Abbott's diagnostics against ongoing viral diversity.
View Article and Find Full Text PDF

As COVID-19 adversely affects patients with cancer, prophylactic strategies are critically needed. Using a validated antibody assay against SARS-CoV-2 spike protein, we determined a high seroconversion rate (94%) in 200 patients with cancer in New York City that had received full dosing with one of the FDA-approved COVID-19 vaccines. On comparison with solid tumors (98%), a significantly lower rate of seroconversion was observed in patients with hematologic malignancies (85%), particularly recipients following highly immunosuppressive therapies such as anti-CD20 therapies (70%) and stem cell transplantation (73%).

View Article and Find Full Text PDF

Background: Individuals whose copies of the survival motor neuron 1 (SMN1) gene exist on the same chromosome are considered silent carriers for spinal muscular atrophy (SMA). Conventional screening for SMA only determines SMN1 copy number without any information regarding how those copies are arranged. A single nucleotide variant (SNV) rs143838139 is highly linked with the silent carrier genotype, so testing for this SNV can more accurately assess risk to a patient of having an affected child.

View Article and Find Full Text PDF