Metal halide perovskites (MHPs) have emerged as a promising class of materials for radiation detection due to their high atomic numbers and thus high radiation absorption, tunable and efficient luminescent properties and simple solution processability. Traditional MHP scintillators, however, suffer from environmental degradation, spurring interest in perovskite-polymer composites. This paper reviews recent developments in these composites tailored for scintillator applications.
View Article and Find Full Text PDFUsing the cation-exchange method, colloidal PbS nanoribbons are converted completely into CdS nanoribbons. This process expands the emission spectrum of the nanoribbons from infrared to visible. The morphology of nanoribbons remains the same after cation exchange, but the crystal structure changes from rock salt to zincblende.
View Article and Find Full Text PDFTwo-dimensional colloidal PbS nanosheets exhibit more than one order of magnitude larger exciton binding energy than their bulk counterpart, making it possible to generate stable excitons at room temperature. It is experimentally revealed that the binding energy of the exciton increases from 26 to 68 meV as the thickness of the PbS nanosheet decreases from 4.7 to 1.
View Article and Find Full Text PDFCharged facets of a nanocrystal can form an intrinsic nanometer-size electric dipole. When the spacing between these nano dipoles is adjusted, the dipolar interaction energy is tuned from a fraction to a multiple of the thermal energy. Consequently, the one-dimensional oriented attachment can be switched on or off, as is the growth of nanorods.
View Article and Find Full Text PDF