Publications by authors named "Yishen Sun"

Soil organic carbon (SOC) represents the largest terrestrial pool of organic carbon and is indispensable for mitigating climate change and sustaining soil fertility. As a major component of stable SOC, microbial-derived carbon (MDC) accounts for approximately half of the total SOC and has repercussions on climate feedback. However, our understanding of the spatial and temporal dynamics of MDC stocks is limited, hindering assessments of the long-term impacts of global warming on persistent SOC sequestration in the soil‒atmosphere carbon cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Global warming is significantly affecting agroecosystems, particularly through increased winter temperatures.
  • Research shows that for every degree Celsius rise in winter soil temperature, crop biomass carbon decreases significantly, with straw and grain losing 6.6 g/kg and 10.2 g/kg respectively, mainly due to soil organic matter loss.
  • Ignoring winter warming's effects may lead to overestimating future food production by 4% to 19%, underscoring the importance of including winter temperature impacts in agricultural models for better climate adaptation.
View Article and Find Full Text PDF

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects.

View Article and Find Full Text PDF

Soil microbes are essential for regulating carbon stocks under climate change. However, the uncertainty surrounding how microbial temperature responses control carbon losses under warming conditions highlights a significant gap in our climate change models. To address this issue, we conducted a fine-scale analysis of soil organic carbon composition under different temperature gradients and characterized the corresponding microbial growth and physiology across various paddy soils spanning 4000 km in China.

View Article and Find Full Text PDF

Proximity Services (ProSe) and Wi-Fi are two promising technologies that may provide support for Mission Critical Voice (MCV) applications in remote and rural areas by enabling Device-to-Device (D2D) communication. In this paper, several performance metrics of ProSe and Wi-Fi are evaluated and compared side-by-side under various configurations. The ns-3 simulation results show that ProSe outperforms Wi-Fi in terms of coverage range and access time with a medium traffic load, while Wi-Fi has a shorter access time under a light traffic load.

View Article and Find Full Text PDF