Publications by authors named "Yishen Liao"

Physiological studies have revealed that rats perform spatial localization relying on grid cells and place cells in the entorhinal-hippocampal CA3 structure. The dynamic connection between the entorhinal-hippocampal structure and the prefrontal cortex is crucial for navigation. Based on these findings, this paper proposes a spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of the rat's brain, with the aim of endowing the mobile robot with strong spatial navigation capability.

View Article and Find Full Text PDF

Rats possess exceptional navigational abilities, allowing them to adaptively adjust their navigation paths based on the environmental structure. This remarkable ability is attributed to the interactions and regulatory mechanisms among various spatial cells within the rat's brain. Based on these, this paper proposes a navigation path search and optimization method for mobile robots based on the rat brain's cognitive mechanism.

View Article and Find Full Text PDF

Physiological studies reveal that rats rely on multiple spatial cells for spatial navigation and memory. In this paper, we investigated the firing mechanism of spatial cells within the entorhinal-hippocampal structure of the rat brain and proposed a spatial localization model for mobile robot. Its characteristics were as follows: on the basis of the information transmission model from grid cells to place cells, the neural network model of place cells interaction was introduced to obtain the place cell plate with a single-peaked excitatory activity package.

View Article and Find Full Text PDF

Physiological studies have shown that the hippocampal structure of rats develops at different stages, in which the place cells continue to develop during the whole juvenile period of rats and mature after the juvenile period. As the main information source of place cells, grid cells should mature earlier than place cells. In order to make better use of the biological information exhibited by the rat brain hippocampus in the environment, we propose a position cognition model based on the spatial cell development mechanism of rat hippocampus.

View Article and Find Full Text PDF

The method of directly using speed information and angle information to drive attractors model of grid cells to encode environment has poor anti-interference ability and is not bionic. In response to the problem, this paper proposes a grid field calculation model based on perceived speed and perceived angle. The model has the following characteristics.

View Article and Find Full Text PDF

Biological studies show that place cells are the main basis for rats to know their current location in space. Since grid cells are the main input source of place cells, a mapping model from grid cells to place cells needs to be constructed. To solve this problem, a neural network mapping model of back propagation error from grid cells to place cells is proposed in this paper, which can accurately express the location in a given region.

View Article and Find Full Text PDF