This paper proposes to improve the output performance of a piezoelectric pump by matching the resonant frequency of the resonator to the optimal operating mode of bridge-type polydimethylsiloxane (PDMS) check valves. Simulation analyses reveal that the side-curling mode of the PDMS valve is conducive to liquid flow and exhibits a faster frequency response compared with the first bending mode. The first bending resonant frequency of a beam-type piezoelectric resonator was tuned close to the side-curling mode of the PDMS valve by adjusting the weight of two mass blocks installed on both ends of the resonator, so that both the resonator and the valve could work at their best conditions.
View Article and Find Full Text PDFThis study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm.
View Article and Find Full Text PDFA simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus.
View Article and Find Full Text PDF