Publications by authors named "Yishan Song"

In this study, a new green composite sponge made of chitosan and modified with ammonium ascorbate (ACS-CIT) was synthesized in just 10 min. Compared with CS-CIT (sponge prepared from acetic acid), ACS-CIT exhibits significantly enhanced adsorption performance for CR, with the saturated adsorption capacities increased from 353.667 to 1261.

View Article and Find Full Text PDF

The responsive release of enzymes, pH, temperature, light and other stimuli is an effective means to reduce the loss of volatile active substances and control the release of active ingredients. The purpose of this study is to design a simple and rapid method to synthesize a multifunctional bilayer membrane, which has good mechanical properties, long-lasting pH and enzyme dual sensitive sustained release properties, and excellent antibacterial activity. The citral nanoemulsion was prepared by ultrasonic method, then the chitosan solution loaded with nanoemulsion was assembled on the gelatin film, and the uniform and smooth gelatin-chitosan bilayer film was successfully prepared.

View Article and Find Full Text PDF

In order to realize the high-value utilization of () heads, immunomodulatory peptides were prepared from the enzymatic hydrolysate of heads, and the action mechanism of immunomodulatory peptides was determined by molecular docking. The results showed that six proteases were used to hydrolyze head proteins, with the animal protease hydrolysate exhibiting the highest macrophage relative proliferation rate (MRPR). The enzymatic products were then sequentially purified by ultrafiltration, Sephadex G-15 gel chromatography, identified by liquid chromatography-mass spectrometry (LC-MS/MS), and finally selected for six immunomodulatory peptides (PSPFPYFT, SAGFPEGF, GPQGPPGH, QGF, PGMR, and WQR).

View Article and Find Full Text PDF

In recent years, silica nanomaterials have been widely studied as carriers in the field of antibacterial activity in food. Therefore, it is a promising but challenging proposition to construct responsive antibacterial materials with food safety and controllable release capabilities using silica nanomaterials. In this paper, a pH-responsive self-gated antibacterial material is reported, which uses mesoporous silica nanomaterials as a carrier and achieves self-gating of the antibacterial agent through pH-sensitive imine bonds.

View Article and Find Full Text PDF

DPP-IV plays a key role for regulation of glucose metabolism in the body. The object of this study was to obtain DPP-IV inhibitors from discarded but protein-rich Penaeus vannamei (P. vannamei) head, and to explore the potential mechanism between DPP-IV and its inhibitors.

View Article and Find Full Text PDF

Dipeptidyl peptidase-IV (DPP-IV) inhibitors can reduce the blood sugar levels of diabetic patients by preventing the rapid decomposition of incretin hormone and prolonging its physiological effects. In this study, DPP-IV inhibitory peptides FAGDDAPR and LAPPRGSL were isolated from defatted Antarctic krill powder (DAKP) protein by the sequential purification of ultrafiltration, gel filtration chromatography, and RP-HPLC, and IC values of the two peptides were 349.70 ± 3.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is the leading cause of bacteria-associated foodborne diarrheal diseases and specifically causes early mortality syndrome (EMS), which is technically known as acute hepatopancreatic necrosis disease (AHPND), a serious threat to shrimp aquaculture. To investigate the genetic and evolutionary relationships of V. parahaemolyticus in China, 184 isolates from clinical samples (VPC, n=40), AHPND-infected shrimp (VPE, n=10), and various aquatic production sources (VPF, n=134) were collected and evaluated by a multilocus sequence analysis (MLST).

View Article and Find Full Text PDF

Background: It is well known that plant essential oils have good antimicrobial activity. However, their strong volatility and intense odor limit their application. Mesoporous silica (MCM-41), a non-toxic mesoporous material with excellent loading capability, is a promising delivery system for different types of food ingredients in the food industry.

View Article and Find Full Text PDF

Background: The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated.

View Article and Find Full Text PDF

A series of luminescent praseodymium complexes with different aromatic carboxylic acids have been synthesized and characterized. The photophysical properties of these complexes have been studied with ultraviolet spectra, phosphorescence spectra and fluorescence spectra. Ultraviolet absorption spectra show that the praseodymium complexes systems with aromatic carboxylate form the more extensive conjugated systems to be suitable for the distribution of electron in the whole coordination environment, resulting in the energy decrease and red-shifts of ultraviolet spectral bands.

View Article and Find Full Text PDF

Four praseodymium complexes of aromatic carboxylates (benzoate, 4-tert-butylbenzoate, 2-benzoylbe-noate, and benzimidazole-5-carboxylate) have been synthesized and characterized, whose photophysical properties have been studied with ultraviolet spectra, phosphorescence spectra, and fluorescence spectra. The fluorescent emission spectra of all praseodymium complexes show two emission peaks under the excitation band of 245 nm at about 395 and 595 nm respectively, while one peak under 415 nm at about 595 nm, which attributed to be 1S0 --> 1I6 (395 nm) transition and the characteristic emission 1D2 --> 3H4 (595 nm) transition of Pr3+ ion. The 1S0 --> 1I6 transition can be ascribed as the transition of charge transfer state, and the 1D2 --> 3H4 can be further proved that there exists an antenna effect in the fluorescence of praseodymium with aromatic carboxylic acids.

View Article and Find Full Text PDF