Publications by authors named "Yishan Shi"

To effectively detect low-altitude small targets under complex sea surface environment, an innovative method has been developed. This method harnesses the chaotic characteristics of sea clutter and employs a combination of Adaptive Noise Complete Ensemble Empirical Modal Decomposition (CEEMDAN), Adaptive Wavelet Thresholding (AWT), and Polynomial Fitting Filtering (SG) for denoising sea clutter data. Subsequently, the Improved Zebra Optimization Algorithm-Extreme Learning Machine (IZOA-ELM) detector is utilized to identify low-altitude small targets amidst the sea clutter background.

View Article and Find Full Text PDF