Feature selection (FS) is a critical step in hyperspectral image (HSI) classification, essential for reducing data dimensionality while preserving classification accuracy. However, FS for HSIs remains an NP-hard challenge, as existing swarm intelligence and evolutionary algorithms (SIEAs) often suffer from limited exploration capabilities or susceptibility to local optima, particularly in high-dimensional scenarios. To address these challenges, we propose GWOGA, a novel hybrid algorithm that combines Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), aiming to achieve an effective balance between exploration and exploitation.
View Article and Find Full Text PDFThe urban development of China is changing from incremental expansion to stock renewal mode. The study of urban functional areas has become one of the important fundamental works in current urban renewal and high-quality urban development. In recent years, big spatiotemporal data has been well applied in the urban function field.
View Article and Find Full Text PDFIntensive land use (ILU) is a multi-objective optimization process that aims to simultaneously improve the economic, social, and ecological benefits, as well as the carrying capacity of the land, without increasing additional land, and evaluation of the ILU over long time series has a guiding significance for rational land use. To tackle inefficient extraction of information, subjective selection of dominant factor, and lack of prediction in previous evaluation studies, this paper proposes a novel framework for evaluation and analysis of ILU by, first, using Google Earth Engine (GEE) to extract cities' built-up land information, second, by constructing an index system that links economic, social and ecological aspects to evaluate the ILU degree, third, by applying Geodetector to identify the dominant factor on the ILU, finally, by using the S-curve to predict the degree. Based on the case study data from northern China's five fast-growing cities (i.
View Article and Find Full Text PDF