Publications by authors named "Yiqun Fang"

Hyperbaric oxygen (HBO) refers to pure oxygen with a pressure greater than 1 atmospheres absolute (ATA), and when the pressure is too high, it can cause convulsive attacks. Adenosine and dopamine have been shown to be closely associated with HBO induced convulsion seizures, and their receptors exhibited a coexisting relationship of mutual antagonism on the membrane of nerve cells. We explored the influence of adenosine and dopamine interplay on the occurrence of oxygen convulsion.

View Article and Find Full Text PDF

Introduction: We aimed to study middle ear barotrauma caused by fast compression followed by buoyant ascent escape from 200 m underwater and its effect on the auditory system, and to validate the preventive effect of tympanocentesis on middle ear barotrauma.

Methods: Twenty Sprague Dawley rats were divided into two groups: rats in group A underwent a simulated fast buoyant ascent escape from a depth of 200 m, while those in group B underwent tympanocentesis before the procedure described for group A. Ear endoscopy, acoustic conductance, and auditory brainstem response (ABR) tests were conducted before and after the procedure to evaluate the severity of middle ear barotrauma and auditory function in both groups.

View Article and Find Full Text PDF

Maintaining cognitive integrity is crucial during underwater operations, which can significantly impact work performance and risk severe accidents. However, the cognitive effects of underwater operations and their underlying mechanism remain elusive, posing great challenges to the medical protection of professionals concerned. Here, we found that a single underwater operation session affects cognition in a time-dependent model.

View Article and Find Full Text PDF

Cellulose, as a biomass resource, has attracted increasingly attention and extensive research by virtue of its widely sources, ideal degradability, good mechanical properties and easy modification due to its rich hydroxyl groups. Nevertheless, it is still a challenge to attain high performance cellulose-based composite film materials with diverse functional combinations. In this work, we developed a multifunctional cellulose-based film via a facile impregnation-curing strategy.

View Article and Find Full Text PDF

Underwater exercise is becoming increasingly prevalent, during which brain function is necessary but is also at risk. However, no study has explored how prolonged exercise affect the brain in underwater environment. Previous studies have indicated that excessive exercise in common environment causes brain dysfunction but have failed to provide appropriate interventions.

View Article and Find Full Text PDF

The increased use and expansion of biomass applications offer a viable approach to diminish reliance on petroleum-derived resources and promote carbon neutrality. Cellulose, being the most abundant natural polymer on Earth, has garnered considerable attention. This study introduces a straightforward method to fabricate a cellulose-based multifunctional composite film designed for efficient light management, specifically featuring flame retardant and thermal-healing capabilities.

View Article and Find Full Text PDF

Conductive hydrogels have been widely used as sensors owing to their tissue-like properties. However, the synthesis of conductive hydrogels with highly adjustable mechanical properties and multiple functions remains difficult to achieve yet highly needed. In this study, lignin hydrogel characterized by frost resistance, UV resistance, high conductivity, and highly adjustable mechanical properties without forming by-products was prepared through a rapid in-situ polymerization of acrylic acid/zinc chloride (AA/ZnCl) aqueous solution containing lignin extract induced by the reversible quinone-catechol redox of the ZnCl-lignin system at room temperature.

View Article and Find Full Text PDF

Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model.

View Article and Find Full Text PDF

Depression is a chronic, relapsing mental illness, often accompanied by loss of appetite, increased fatigue, insomnia and poor concentration. Here, we performed serum and urine metabolomics and fecal 16S rDNA sequencing studies on 57 unmedicated patients with major depressive disorder (MDD) and 57 healthy controls to characterize the metabolic and flora profile of MDD patients. We observed significant differences in serum and urinary metabolome between MDD patients and healthy individuals.

View Article and Find Full Text PDF

Background: This study sought to investigate therapeutic effects of hydrogen-rich saline (HRS) combined with hyperbaric oxygen (HBO2) in an experimental rat model of acute lung injury (ALI).

Method: Forty male Sprague-Dawley rats were randomly divided into sham, LPS, LPS + HBO2, LPS + HRS, and LPS + HBO2 + HRS groups. After an intratracheal injection of LPS-induced ALI, the rats were given a single-agent HBO2 or HRS or HBO2 + HRS treatment.

View Article and Find Full Text PDF

Background And Aim: Both cardiorespiratory fitness (CRF) and muscular strength are reported to decrease with age and menopause, which considered to be risk for cardiovascular diseases (CVDs). Previous relevant meta-analyses are inconclusive on the beneficial effects of exercise, particularly in post-menopausal women. In this systematic review and meta-analysis, we investigated the effects of exercise modalities on CRF and muscular strength in post-menopausal women, and identified the effective exercise type and duration.

View Article and Find Full Text PDF

Unit variance (UV) scaling, mean centering (CTR) scaling, and Pareto (Par) scaling are three commonly used algorithms in the preprocessing of metabolomics data. Based on our NMR-based metabolomics studies, we found that the clustering identification performances of these three scaling methods were dramatically different as tested by the spectra data of 48 young athletes' urine samples, spleen tissue (from mice), serum (from mice), and cell (from ) samples. Our data suggested that for the extraction of clustering information, UV scaling could serve as a robust approach for NMR metabolomics data for the identification of clustering analysis even with the existence of technical errors.

View Article and Find Full Text PDF

The main objective of the present study was to determine metabolic profile changes in the brains of rats after simulated heliox saturated diving (HSD) to 400 meters of sea water compared to the blank controls. Alterations in the polar metabolome in the rat brain due to HSD were investigated in cortex, hippocampus, and striatum tissue samples by applying an NMR-based metabolomic approach coupled with biochemical detection in the cortex. The reduction in glutathione and taurine levels may hypothetically boost antioxidant defenses during saturation diving, which was also proven by the increased malondialdehyde level, the decreased superoxide dismutase, and the decreased glutathione peroxidase in the cortex.

View Article and Find Full Text PDF

If a damaged submarine cannot be rescued in time, it is necessary to carry out a submarine escape by free ascent. Decompression illness is the greatest threat to the safety of submariners. The maximum depth at which a safe escape can be carried out is unknown.

View Article and Find Full Text PDF

Introduction: This study measured pulmonary function in divers after a single helium-oxygen (heliox) dive to 80, 100, or 120 metres of sea water (msw).

Methods: A total of 26 divers participated, of whom 15, five, and six performed a 80, 100, or 120 msw dive, respectively. While immersed, the divers breathed heliox and air, then oxygen during surface decompression in a hyperbaric chamber.

View Article and Find Full Text PDF

The composition of gut microbiota is not a static state in humans but fluctuates in response to changes in environments, diet, and lifestyle factors. Here, we explored differences in gut microbiota between populations worked offshore and onshore and further studied microbiota-associated variables in offshore workers (OFWs). We investigated the gut microbiota of 168 healthy subjects (offshore: 145 and onshore: 23) using 16S rRNA sequencing.

View Article and Find Full Text PDF

To investigate the effects of different doses of nuclei exposure at different time on morbidity, mortality, and damage indicators in a rat model of decompression sickness caused by rapid flotation escape at a large depth. Eighty male SD rats were randomly divided into blank control group, escape control group and six intervention groups (escape at 4 hours after 4 Gy radiation, escape at 4 hours after 6 Gy radiation, escape at 4 hours after 12 Gy radiation, escape at 8 hours after 4 Gy radiation, escape at 8 hours after 6 Gy radiation, escape at 8 hours after 12 Gy radiation). Rats in intervention groups were exposed to different doses of γ-ray (4,6,12 Gy, respectively), and then were carried out a large depth and rapid buoyancy escape experiment (maximum pressure depth of 150 m).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate the physiological effects of a single deep helium-oxygen (heliox) dive to a depth of 80 meters, involving 40 male divers over a total of 280 minutes.
  • Results showed significant changes in blood cell compositions: an increase in granulocytes and decreases in lymphocytes, red blood cell count, hematocrit, and platelets post-dive.
  • The dive also led to elevated levels of certain biomarkers indicating skeletal muscle damage and oxidative stress, while some markers related to endothelial activation and immune response showed opposing trends.
View Article and Find Full Text PDF
Article Synopsis
  • * Rats were divided into groups based on exposure duration (3, 6, 9, and 12 hours), and their behavior, mortality, and lung tissue water content were observed.
  • * Results showed that acid-base status shifts over time, beginning with respiratory acidosis and metabolic alkalosis, transitioning to decompensated alkalosis, and finally leading to decompensated acidosis, indicating blood gas analysis is key for monitoring POT progression.
View Article and Find Full Text PDF

Background: This study aimed to establish and validate an easy-to-operate novel scoring system based on simple and readily available clinical indices for predicting the progression of chronic kidney disease (CKD).

Methods: We retrospectively evaluated 1045 eligible CKD patients from a publicly available database. Factors included in the model were determined by univariate and multiple Cox proportional hazard analyses based on the training set.

View Article and Find Full Text PDF

The present study was designed to assess the stress responses to a simulation model of the undersea environment that is similar to some undersea working conditions such as submarine rescue, underwater salvage and underwater construction. Restraint, hyperbaric air and immersion were chosen to produce the simulation stress model in rats for four hours. Rats were randomized into five groups: control group, restraint (R) group, hyperbaric air (H) group, restraint plus hyperbaric air (RH) group, and restraint plus hyperbaric air plus immersion (RHI) group.

View Article and Find Full Text PDF

Objective: To find if edaravone can play a protective role in a mouse model of pulmonary oxygen toxicity and explore the intervention mechanism.

Methods: Thirty male C57BL/6 mice were randomly divided into 3 groups(Air +Vehicle, Hyperbaric oxygen(HBO) +Vehicle and HBO + Edaravone). Mice were either given edaravone (5 mg/(kg·d)) in sterilized water or a sterilized water vehicle for 3 days before oxygen exposure.

View Article and Find Full Text PDF

Nuclear factor kappa B (NF-κB) is the critical transcriptional factor in the pathogenesis of acute lung injury (ALI). NF-κB regulates the expression changes of inflammatory factors such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6). In a previous study we showed that decompression sickness (DCS) caused by simulated unsafe fast buoyancy ascent escape (FBAE) could result in ALI, which was characterized by expression changes of inflammatory factors in rat lung tissue.

View Article and Find Full Text PDF

Exercise plays an important role in the prevention and treatment of chronic liver disease and associated metabolic disorders. A single bout of exercise induces tissue blood flow redistribution, which decreases splanchnic circulation and leads to physiologic hypoxia in the gastrointestinal system and liver. The transcription factor, hypoxia inducible factor-1α (HIF-1α), and its regulator, prolylhydroxylase 2 (PHD2), play pivotal roles in the response to oxygen flux by regulating downstream gene expression levels in the liver.

View Article and Find Full Text PDF

Polypropylene (PP) modified with two reactive monomers, divinyl benzene (DVB) and maleic anhydride (MAH), was used as the matrix to prepare wood⁻polypropylene composites to improve interfacial compatibility. The effects of the co-modified PP matrices with different DVB concentrations on the mechanical properties of the composites were evaluated. Compared with unmodified composites and the composites containing a coupling agent, the composites modified with MAH only, and that with both MAH and DVB, improved the tensile, flexural, and impact strengths.

View Article and Find Full Text PDF